
Object-Specific Redundancy Elimination
Techniques?

Rhodes H. F. Brown and R. Nigel Horspool
{rhodesb,nigelh}@cs.uvic.ca

Department of Computer Science
University of Victoria, P.O. Box 3055

Victoria, BC, Canada V8W 3P6

Abstract. Traditionally, code optimization techniques have focused on
the analysis and manipulation of low-level, simply-typed values. In some
cases though, and especially for object-oriented languages, the semantics
of the source language and/or execution model may provide additional
constraints on low-level values which can be leveraged to produce further
optimizations. We believe that numerous opportunities exist to induce
program optimizations based on the static and dynamic properties of
objects. This paper introduces several new approaches to redundancy
elimination based on object-specific properties.

1 Introduction

Broadly speaking, redundancy elimination optimizations are those that remove
or reduce the occurrence of unnecessary computations in a program. These op-
timizations focus on identifying situations where the result of a computation
is pre-determined, or where the result of an equivalent computation is readily
available in the same context. If a computation is deemed to be redundant, and
it has no other side-effects, then it can be replaced with a direct reference to
the previous or known result. Of course, such replacements are only valid if a
program analysis can prove that the previously computed result is equal to the
one that would be computed in the target context. In other words, an analysis
must identify an invariant that persists from the previous computation through
to the target context and guarantees the equivalence of the two results.

Traditional redundancy elimination relies on the idea that computations in-
volving simple values are invariant as long as the participating variables are
not assigned new values. Other, more sophisticated optimizations such as static
method binding and method inlining [2, 3] (i.e., elimination of polymorphism &
dispatch mechanisms) rely on the notion that an object’s run-time type is also
an invariant property. If it is possible to associate the use of an object reference
with a particular instantiation, then the precise type of the object can be de-
termined and dynamic tests of the object’s type become redundant. We build
? This research was supported in part by a grant from the Natural Sciences and En-

gineering Research Council of Canada.

2 Brown & Horspool

on this concept by observing that “type” (i.e., a class label) is certainly not the
only invariant that an object reference inherits at the point of instantiation.

void foo(T o) {
o.m1(); // unknown target

...

o.m1(); // known target

...

o.m2(); // known vtable

}

Fig. 1. Dynamic Dispatch Redundancy

One obvious, yet overlooked property
of statically-typed, object-oriented lan-
guages is that the method implementa-
tions for a specific class type are fixed over
the lifetime of any particular instance of
the class. To see how this property can be
leveraged to eliminate redundant compu-
tations, consider the common virtual dis-
patch table approach to implementing dy-
namic polymorphism. In a given context
(see Figure 1) an object’s specific type
may not be known. Therefore, upon reaching an invoke expression, the actual
target address of the method is loaded from the virtual dispatch table associated
with the object—essentially, a computation involving one or more indexed mem-
ory loads. If another invoke of the same method applied to the same receiver
(e.g., the second invoke of o.m1()) occurs in this context then the second query
of the dispatch table is clearly redundant since the target method address re-
mains invariant. Additionally, some partial redundancy may occur if the receiver
of a dispatch was previously involved in a different dispatch computation or a
run-time type test. In both cases, it is likely that some relevant data was already
loaded as part of the earlier computation.

An important observation regarding the elimination of redundant virtual
table queries is that the invariant for a specific object reference (i.e., the contents
of its dispatch table) cannot be statically determined for languages with open-
ended hierarchies and dynamic class loading, such as Java and C#. In this case,
even though the invariant persists throughout the lifetime of a given object, it
must be dynamically detected. This is in stark contrast to classic redundancy
elimination which usually considers statically detectable, yet transient invariant
properties.

There are numerous other kinds of object/reference properties that can also
be inferred from the dynamics of a given execution context. For example, local
elimination of nullness checks and array-bounds checks [4] relies on an inspection
of earlier referencing and indexing operations.

In the following discussion, we explore a variety of static and dynamic schemes
for identifying and exploiting persistent, modal, and transient object-specific
properties to perform new kinds of redundancy elimination transforms. In some
cases we exploit existing features of the semantics of Java. We also propose sev-
eral semantic extensions that allow programmers to further constrain the use
of object references in certain contexts. Our examples focus on Java, however
our proposals are intended to be applicable to a wide range of object-oriented
languages. Our goal is to identify the kinds of properties that can be associated
with object values, detected through some combination of static and dynamic
measurements, and leveraged to eliminate redundant computations.

Redundancy Elimination 3

2 Static Invariants

for (i=0; i<array.length; i++)

// use array[i]

Fig. 2. Redundant Constant Loading

Consider a typical example of itera-
tion over an array in Java, as illus-
trated in Figure 2. Clearly, the value
of array.length is unchanged over the
lifetime of the array object. Thus it is
only necessary to load the length value
once in the current context rather than every time the loop condition is eval-
uated. In fact, similar reasoning can be applied to any Java field declared as
final.1

class X {
final int x;

X() {
this.m();

x = 1;

}
void m() {
// x: 0 or 1?

}
}

Fig. 3. Incomplete Initialization

There is, however, one caveat to consider
when attempting to eliminate redundant loads
of final fields. In Java, it is possible for a final
field to be loaded before the field has actually
been initialized with its “final” value. A con-
structor (or class initializer) may invoke other
methods, which access fields, before complet-
ing the field initialization. Figure 3 illustrates
this dilemma. Moreover, with the possibility for
open-ended extensions to the class hierarchy, it
may be impossible to statically determine if a
given field load is being applied to a fully ini-
tialized object. To be both valid and effective,
an optimization that removes redundant final
field loads needs to establish another form of invariant, namely that the tar-
get object is, in fact, fully initialized (i.e., constructed) at the initial load point
and that this condition persists through to any subsequent loads in the same
context. Obviously the “constructed” property is persistent—once constructed,
objects do not later revert to being unconstructed—but, unlike type and method
bindings, the property does not arise immediately—it follows initialization, not
allocation. Thus, we require a mechanism to deduce which object references have
definitely completed this modal transition and are fully initialized.

One approach to detecting the constructed status of an object might be to
include a new bit in the object’s status header and set the bit on completion
of construction. However, a purely static approach is also possible if the source
language can offer guarantees regarding the constructed status of object refer-
ences. Java attributes (introduced in version 5 of the language [5]) provide a
basis for establishing new language semantics to identify and control the pro-
liferation of references to objects that may not be fully initialized. Just as the
existing access modifiers (e.g., private, protected, etc.) restrict the use of cer-
tain methods, a @Constructed attribute could be used to indicate that a method
can only be invoked on a fully-constructed receiver. Applying such an attribute

1 Note that any private field that is only assigned a value inside a constructor (or class
initializer for statics) is effectively final.

4 Brown & Horspool

to method m() in Figure 3 would forbid its use in the constructor, and hence
disambiguate the result of loading x. Alternatively, since methods are usually ap-
plied to constructed objects, it might be more practical to consider the converse:
only methods with an @Incomplete attribute can be invoked inside constructors.
If the compiler (or verifier) can be relied on to enforce such attributes transi-
tively across invocations and down the inheritance hierarchy, it would enable the
safe and effective removal of most redundant final field loads.

class Point {
private double x, y;

@Constant

double getX() {
return x;

}

// non-constant:

void setX(double x) {
this.x = x;

}

// y access...

}

class Polar extends Point {
@Constant

double getRadius() {
return sqrt(

getX()*getX()+

getY()*getY());

}
...

}

Fig. 4. Constant-Valued Methods

Another example of a compiler-enforced
attribute that would have significant po-
tential for redundancy elimination is a
@Constant attribute, with similar semantics
to C++’s const modifier [6] (as applied to
methods). To see the utility of such an at-
tribute, consider that a common practice in
object-oriented design is to restrict direct
access to field values and instead provide in-
direct access via “getter” methods. In many
cases, the object interface may also provide
access to values that are not actually stored
in fields, but merely derived from them (for
example, the polar coordinates of a Carte-
sian point). Figure 4 provides a simple il-
lustration of methods that always yield the
same constant value.

Just as the “final” property implies an
invariant over the use of field members,
enabling the removal of redundant loads,
a “constant” property would imply invari-
ance over the use of method members,
enabling the removal of entire redundant
invocations—for example, the second uses
of both getX() and getY() in computing
the getRadius() result in Figure 4. The one
important difference is that while finality is
persistent (post-construction, of course), the precise return value of constant
methods can only be guaranteed as long the receiver has not been mutated (di-
rectly, or indirectly). In particular, to leverage the full potential of a @Constant
method attribute, it must be combined with knowledge of whether the receiv-
ing object can be concurrently modified. While a whole-program thread-escape
analysis [7] may be useful in this regard, we can also leverage the potential of
attributes to bound the possibilities for concurrent mutation.

As with construction, objects that escape the thread context in which they
were created undergo a modal transition: once a reference is passed/assigned
to an external context, any subsequent uses of the object must assume that
concurrent modifications are possible. To make a @Constant method attribute

Redundancy Elimination 5

effective, it could be combined with a “does-not-escape”, or more practically, an
@Escapes method attribute that identifies when references that may influence an
object’s state escape. Again, if this property is enforced transitively and down the
hierarchy, it could be used to assert that a locally allocated object definitely does
not undergo any concurrent modifications. For example, given a locally allocated
Point (as in Figure 4), a call to setX() may alter the state of the object but,
it does not do anything to expose the state beyond the current thread context.
Thus, repeated use of the same @Constant method (e.g., getX()), following
a setX() call, may still result in some guaranteed redundancy. For non-local
objects, the situation is more complicated. A thread-escape analysis may be
useful in providing an approximation of which references can be concurrently
accessed, but a more effective approach may be to detect the synchronization
status dynamically.

3 Dynamic Invariants

for (i=0; i<array.length; i++)

for (j=0; j<array[i].length; j++)

// use array[i][j]

Fig. 5. Redundant Field Access

Consider an extension of our pre-
vious redundant load example,
this time using a two-dimensional
array. Clearly the repetitive load-
ing of array[i] in the inner loop
of Figure 5 is redundant. How-
ever, Java semantics dictate that,
in general, the redundant access cannot be eliminated due to the potential for
concurrent modification. Again, similar reasoning applies to all forms of non-final
field loads and stores.

if (array is locked) {
tmp = array[i];

for (j=0; j<tmp.length; j++)

// use tmp[j]

}
else {
// as before

}

Fig. 6. Redundant Load Elimination

A static thread-escape analysis may
provide an approximation of the con-
texts in which an object may be modi-
fied concurrently but, an alternative is to
simply inspect the synchronization sta-
tus in the object’s header before execut-
ing the first load (or store) operation.
Then, assuming the object is not un-
locked in the current context, subsequent
re-loads (or re-stores of the same value)
are unnecessary and can be safely elimi-
nated. Figure 6 illustrates a replacement
for the inner loop above that safely eliminates the redundant field loads. Note
that this approach bears a strong resemblance to the guarded inlining scheme of
Detlefs and Agesen [8]. Both approaches focus on dynamic detection of incidental
object-properties.

Of course, to be effective, a scheme based on dynamic detection of an ob-
ject’s locked status requires that the target object actually gets synchronized at
some point. Arbitrarily inserting synchronization statements would violate the

6 Brown & Horspool

semantics of the input program. However, if the target object is locally allocated
and does not escape, it may be possible (and preferable) to introduce artificial
locks to enable the elimination of redundant loads, stores, or invocations (as in
Figure 4) performed in nested routines. Furthermore, it is reasonable to assume
that the overhead of such additional synchronization would be negligible when
compared to the cost of several redundant loads, stores or invocations, given a
fast mechanism for securing uncontended locks [9, 10].

class LongLived {
final T f;

LongLived(T f) {
this.f = f;

// type of f is fixed,

// but unknown

}
void m1() {
f.m2();

// target of invoke is

// fixed for each LongLived

}
}

Fig. 7. Instance Specialization

Yet another potential optimiza-
tion based on dynamic detection
of object invariants is to consider
specialized object implementations
based on the values assigned to final
fields. From a static point of view (as
seen in Figure 7), it is often difficult
to eliminate polymorphic dispatches,
in favor of direct method bindings
and/or inlining, due to the potential
for dynamic class loading. However,
from the point of view of a particular
object instance, dispatches on final
fields will bind to specific and invari-
ant method targets. Thus, for long-
lived objects, it may be worthwhile to
detect the precise types assigned to final fields and generate specialized method
implementations with direct dispatches or inlined code. Such an approach would
necessitate object-specific rather than type-specific dispatch tables but, the ap-
proach is quite feasible given the right object layout.

Su and Lipasti [11] describe a similar notion of specialization based on object
state. In their approach, specializations are viewed as dynamic extensions of the
class hierarchy. Unfortunately, this perspective can be misleading since these
specializations do not introduce any new type semantics. Our view differs in that
we recognize that certain, possibly dynamic, object properties and state values
permit automated generation of more efficient object implementations. Dean,
et al. [12] propose a similar, type-based (rather than object-based) approach.
In another related idea, Maurer [13] describes an explicitly programmed form
of specialization, called metamorphic programming, where the implementation
associated with a given object appears to evolve over the lifetime of the object.

4 Conclusion

In the previous sections, we have identified a number of opportunities for ex-
ploiting both static and dynamic object-specific properties to enable redundancy
elimination transforms. For the most part, these proposals build on existing opti-

Redundancy Elimination 7

mization schemes. Our contribution is to present (and advocate) a holistic2 view
of object-oriented optimization. Taken individually, properties such as the syn-
chronized status of objects or the invariance of method results may yield some
potential optimization. However, to achieve truly effective redundancy elimi-
nation, it is necessary to combine this knowledge, along with other static and
dynamic properties, to expose all of the opportunities for optimization.

It is quite reasonable to presume that the static language extensions we
propose would be adopted by the programming community since they offer
benefits beyond just improved redundancy elimination. Clearly, each of the
“constructed,” “constant,” and “escapes” attributes allow a refinement of the
programmer’s intent when architecting a class, enhancing maintainability and
other software engineering concerns. The information provided by these at-
tributes could also be exploited by a variety of other analyses and transforms.
For example, the constraints provided by an @Escapes attribute (or a lack
thereof, indicating no escaping references) could be used to achieve more precise
model checking of a program’s concurrent behavior [15]. In another example, a
@Constant attribute could be used to enhance the effectiveness of speculative
multithreading [16] by identifying methods that have (guaranteed) predictable
results, even when executed concurrently. In short, our proposals demonstrate
the need to consider new forms of “object modifiers” that extend beyond the
basic, type-associated, static access modifiers (e.g., private, final, etc.).

Our initial investigations suggest that a focus on object-specific properties
has the potential to reveal a number of new and significant optimization oppor-
tunities. In the near term, we aim to quantify this potential by estimating the
utility of our combined approach on actual benchmark programs. Ultimately, our
goal is to develop a collection of effective, object-specific optimization techniques
using a combination of ahead-of-time and just-in-time compilation strategies.

References

1. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann, San Francisco, CA (1997)

2. Sundaresan, V., Hendren, L., Razafimahefa, C., Vallée-Rai, R., Lam, P., Gagnon,
E., Godin, C.: Practical virtual method call resolution for Java. In: Proceedings
of the ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), New York, NY, ACM Press (2000) 264–
280

3. Qian, F., Hendren, L.: A study of type analysis for speculative method inlining in
a JIT environment. In: Proceedings of the International Conference on Compiler
Construction (CC). Lecture Notes in Computer Science, Springer (2005) 255–270

4. Qian, F., Hendren, L., Verbrugge, C.: A comprehensive approach to array bounds
check elimination for Java. In: Proceedings of the International Conference on

2 From Reference.com (http://www.reference.com/browse/wiki/Holism): “Holism
. . . is the idea that the properties of a system cannot be determined or explained by
the sum of its components.”

8 Brown & Horspool

Compiler Construction (CC). Lecture Notes in Computer Science, Springer (2002)
325–342

5. Gosling, J., Joy, B., Steele, G., Bracha, G.: The JavaTM Language Specification.
Third edn. Addison-Wesley (2005)

6. Stroustrup, B.: The C++ Programming Language. Third edn. Addison-Wesley,
Reading, MA (1997)

7. Blanchet, B.: Escape analysis for JavaTM : Theory and practice. ACM Transactions
on Programming Languages and Systems 25(6) (2003) 713–775

8. Detlefs, D., Agesen, O.: Inlining of virtual methods. In: Proceedings of the Eu-
ropean Conference on Object-Oriented Programming (ECOOP). Lecture Notes in
Computer Science, Springer (1999) 258–278

9. Bacon, D.F., Konuru, R., Murthy, C., Serrano, M.: Thin locks: Featherweight
synchronization for Java. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), New York, NY, ACM
Press (1998) 258–268

10. Gagnon, E., Hendren, L.: SableVM: A research framework for the efficient exe-
cution of Java bytecode. In: JavaTM Virtual Machine Research and Technology
Symposium, USENIX Association (2001)

11. Su, L., Lipasti, M.H.: Dynamic class hierarchy mutation. In: Proceedings of the
International Symposium on Code Generation and Optimization (CGO), Wash-
ington, DC, IEEE Computer Society Press (2006) 98–110

12. Dean, J., Chambers, C., Grove, D.: Selective specialization for object-oriented
languages. In: Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), ACM Press (1995) 93–102

13. Maurer, P.M.: Metamorphic programming: Unconventional high performance.
IEEE Computer 37(3) (2004) 30–38

14. Ruf, E.: Effective synchronization removal for Java. In: Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), New York, NY, ACM Press (2000) 208–218

15. Dwyer, M.B., Hatcliff, J., Robby, Ranganath, V.P.: Exploiting object escape and
locking information in partial-order reductions for concurrent object-oriented pro-
grams. Formal Methods in System Design 25(2-3) (2004) 199–240

16. Pickett, C.J.F., Verbrugge, C.: Return value prediction in a Java virtual machine.
In: Proceedings of the Value-Prediction and Value-Based Optimization Workshop.
(2004) 40–47

17. Pominville, P., Qian, F., Vallée-Rai, R., Hendren, L., Verbrugge, C.: A framework
for optimizing java using attributes. In: Proceedings of the International Confer-
ence on Compiler Construction (CC). Lecture Notes in Computer Science, Springer
(2001) 334–554

