
Compile-Time Analysis of 0 b ject-Oriented
Programs

Jan Vitek, R. Nigel Horspool and James S. Uhi

Depatrment of Computer Science
University of Victoria *

Abstract. Generation of efficient c d e for ob ject-orient4 programs requir~
knowledge of object Iifetimes and method bindings. For object-oriented Ian-
guages that have automatic storqge management and dynamic look-up of
methods, the compiler must obtain such knowledge by performing static anal-
ysis of the source code. We present a.n analysis algorithm which discovers the
potential classes of each object in an object-oriented program as well as a safe
approximation of their lifetimh. These results are obtained using abstract.
domains that approximate memory configurations and interprocedural cdl
patterns of the program We present several alternatives for these abstract
domains that permit a trade-off between accuracy and complexity of the
overall analysis.

1 Introduction

The object-oriented approach to programming has 'become an accepted program-
ming paradigm, joining other paradigms such as imperative, functional and rela-
tional programming. This new paradigm is normally associated with the concepts of
class, method and inheritance. Different object-oriented languages implement these
concepts with varying degrees of dynamic behaviour.

At one extreme, SMALLTALK makes every feature as dynamic as possible. In-
stances of a class are created dynamically which, when no longer referenced, are
garbage collected automatically. Messagm are implemented by dynamic binding of
call site to method implementation. In general this means that a run-time search
through the inheritance hierarchy to find the appropriate method is required for
every message send. Finally, SMALLTALK is dynarnicaily typed, there are no type
declarations and methods are typechecked at run-time.

At the other extreme, GI+ implements as much as possible in a static manner so
that C2+ compilers can generate eficien t code. In particular, memory is allocated
and dsalIocated explicitly by the programmer, methods are statically typed, and
message sends are bound statically under programer control.

In an ideal world, an object-oriented language would be as dynamic as SMALL-
TALK and as efficient as %. The language would provide dynamic features, but
a compiler wouId analyze the code and determine whether or not these features
are used. The user would then only pay a run-time penalty when, and where, the
language is used in a truly dynamic manner.

* P.O. Box 3055, %ctoria, BC, Canada V8W 3P6. {jritek, nigalh, juhl)@csr .uvic .ca

Short of the ideal, we believe there are ways to improve over existing compiler
technology. For instance, static p w p m analgrsis provides a compiler with the infor-
mation needed to distinguish between static and dynamic portions of a program. In
particular, we have been investigating compile-time analysis techniques to determine
the class(es) of each. object in an object-oriented program. This knowledge should
permit the following compiler optimizations.

Static binding of message sends to particular method implementations.
Compiletime type checking of some method parameters.
In-line expansion of method bodies.

The in-lining optimization is particularly relevant to object-oriented languages
where programs tend to be composed of many classes containing very short method
definitions. in practice, in-lining wins big. Experiments have shown that with no
in-lining SELF programs would run between 4 and 160 times slower [2]. With minor
changes, our analysis can be used to infer lifetimes of objects and therefore shift
some of the garbage collection overhead from run-time to compile- time.

For our research we have invented a "ty picaln language with (single) inheritance,
no type declarations of variables, untyped dynamically bound methods and aut+
matic memory management . The use of this language is not a restriction. We expect
our technique to be widely applicable to compilers for existing languages.

The remaining sections of this paper review past work in the area and give a gem
eral overview of our approwh, briefly introduce the small object-oriented language,
and then describe the analysis algorithm and abstract domains.

2 Related Work and Overview .
I

The difficulty in optimizing objectoriented -program lies in the lack of type infor-
mation. Without precise information on the class of the object to which a message
is sent, it is difficult to determine the effect of the message and to bind it statically.
(Note that, static typing, as implemented in EIFFEL, helps little since a type in
EIFFEL consists of a class along with all of its s u b c l ~ s .)

Previous research specific optimizing object-oriented programs has focused on
providing some form of useful type information to the compiler (1 3, 10, 11, 1. Thii
research was pioneered by Susuki [13] who first separated the concepts of type and
inheritance. In his framework any set of classa define a type. Smaller sets are more
informative: a singleton set represents the case when the object has a unique class,
and an empty set indicates an error-there is no pcssible class for the object. Types
are then inferred by a unification algorithm.

Several extensions to this framework were proposed to correct some of the short-
comings of the original algorithm [HI, 11,i'J. Johnson proposed pararneteri~d types
so that many common programs using objects with polymorphic instance variables
could be typed [lo]. Palsberg and Schwartzbach developed a type inference a l p
rithm that takes the context of each message send into account to derive sharper
types ill]. Although the algorithm is limited to the analysis of complete programs,
their results seem to be the m t accurate to dde.

These algorithms have a number of shortcomings which cause unsatisfactory
results kt many simple programs. One source of inaccuracy is that all variables are
treated as global, so that an assignment to the instance wxiable of one object affects
all other objects of the same class. Another problem is that the n i l object (empty
reference) is essentidy swept under the rug, by either ignoring it entirely or treating
it as a special case. Finally, dl of the above algorithms enforce a typediscipline on
the programs to ensure a degree of static type-safety. (This approach is inherently
limited by the possibility of sending a message to nil.)
We propose a data flow analysis algorithm [l], parameterized with analysh do-

mains, that provideg abstract representations for program state and interprocedural
call patterns. The technique is similar to abstract interpretation [4]. In our case, we
draw on work done in the field of compiler optirnbation for our state abstraction
13, 91 and call pattern ab-stFaction [I 2,6,2]. Specifically, our algorithm differentiates
among instances of the same c l w and therefore maintains greater precision with re-
spect to the type of their instance variables. Empty referama can be'detected; -the
aigorithm can provide musi/may information for n i l objects. Aliasing is implicitly
taken into account by the state abstraction (as in 131).

As with most abstract interpretation or d&a flow analysis frameworks, the ac
curacy of the r q d b s depepds on the complexity of the abstract domains. Therefore,
we present two related domains f a abstracting program state. The first is relatively
unsophisticated but should produce mults rapidly. The dcond extends the first and
yields more accurate results. With both domains, any approximatations are conserva-
tive in nature. When our dgorithm, with either domain, derives a set of classes for
an object at a particular point in the program, that set is guaranteed ta either be
exact or be a superset of the exact answer. At worst, the compiler will be unabk to
optimize away a11 unnecessary method look-ups and run-time type-checks.

There are similarities between our static analysis technique and the SELF tech-
nology [2]. But the ultimate goals are different. In SELF compilation is done at
run-time, so efficiency of the compiler is of paramount importance. For this reason
the SELF compiler does not perkm interprwedural analysis, nor does it keep t m k
d proDarn state.

3 An 0 b ject-Oriented Language

The eimple untyped object-oriented language defined in thi section is u ~ d tqdlus-
trate the analysis presented in su1;sequent sections. It should be noted that ithis Ian-
guage is b i d towards compilation. In particular, run-time modiftcation of c w .
(as in 151) and of the inheritance hierarchy (as in, /2]) is not allowed, wither
messages nor class identifiers may be manipulated at run-time.

The syntax of the language is showm in Figure 1, using the following notati~nal
conventiom: curly brxkets represent optional constructsF superscript plus signs hdi-
cate one or more occurrences of-the preceding constrnct, wd italicized text repraenta
urn-terminals.

The semantics are typical of classbased .object-oriented languages in which dy-
namic object creation, automatic storage rech-mation and singlq. inheritance play a
major role. A class is similar to a record or structure type in an imperatiw language

, .
progmm ::= {clasi*) mein
main ::= main (var i 8 } stat+
class ::= class classid { inherits clas8id 1 {var it@) { methods-method+)
met hod ::= methodid { (i d)) (var id+ } is stat+
stat , ::= i d := e x p 1 / exp then atat+ else stat+ (

while e z p do stat+ 4 return exp I ezp

e*P ::= id methodid((id)) 1 eeH 1 classid new 1 i d I wtasdaat
cotastatat ::=nil 1 true I false I 0 I 1 I ...

Fig. 1: Syntax of a simple object-oriented language

where the fields consist oE data fields called instance variables, and named function
pointers,called methods. The instance variables of an object may be acc-d only
through the object's methods. A class Y may inherif from another class X, using the
inh'erits clause, which includes dl of X's data fields in Y, and a pointer to a list of
X's methods. Y is said to be a subclass of X, and, similarly, X is said to be a s~rperclass
of Y. Not including X's methods directly allows them to be over-tidden in Y, which
is the easence of inheritance.

An object is manipulated by sending it a naessrage, which consists of a name and
an argument, if appropriate. A message send causes a search of the object's methods
for a matching name. In the case of failure, superclass method tables are seuched in
order, starting at the immediate saperclass, until either a match is found or no such
method exists. If the search is succedul, the corresponding function ii d e d with
the mesgage's argument, dong with a hidden argument named self which is bound
to the object receiving the message. If the search fails, the program is erroneous and
a run-time error is signalled.

A new object, or instance, of class C is created by C new. Ail instance variables
of a new object are initialized to the value n i l . Predefined constants in the language
include numbers, truth vdues, n i l , dong with binary arithmetic and logic primitives
such as + and 2. The language does not include the super construct, which allows
direct access to inherited methods, because such method invocations can always be
bound staticaI1y at compile time. I

4 A Model of Programs and State

In our toy language a program is defined as a set of class definitions and a main
procedure. Before kginning analysis, two transforinations are applied to the p r s
gram. The inheritance hierarchy is flattened, as in [ll], which "fills" in all inherited
methods with the appropriate superclass methods. Also, all variables and formal ar-
guments are given unique n m . To preserve semantics, instance variables inherited
from a superclass retain the same name.
When a program is executed, Its state consists of a set of constants and active

objects referring to each other through their instance variables. We find it convenient
to view this structure as a graph of unbounded size in which nodes stand for objects
or-constants and =arcs represent the value of instance variables. Labels distinguish
the arcs originating from a node; there is one label per instance variable of the

corresponding object. Constants are nod- with no outgoing arcs. Activation records
for methods are regarded as objects and therefore appear as nodes in the object
graph. Their local variables are treated as instance variables. .

Definition 1. Let be a program and L (labels) a set of variable names. An ob-
jeci graph is a pair (IVY A) , where N is a finite set of objects (nodes) and A
N x N x L is a finite set of instance variables (labeled arcs).

During static andysis a program, is represented by a conlrol flow graph and
an abstract object graph. Building the control flow graph for our analysis differs
only slightly from building the interprocedurd control flow graph in an imperative
language (1'21. In particular, a message send has arcs leading to and returning Born
all methods whose selector matches the message. Message sends are split into two
nodes, corresponding to the call and return portions, the former binding arguments,
the latter binding the return result if the statement is part of an assignment. Finally,
an extra exit node is added to every method and to the main program.

5 Analysis with Abstract Objects

The state of an object-oriented progam at any poiat in its computation is captured
by the instantaneous states of all the objects in the computer's memory. At some
point in a particular computatian, this state is unique and can be represented by an
object graph. Static analysis, however, examines textual points in the program and
there may be many different computations that cause control to reach a particular
textual point. Thus, each textual point is associated with a set of possible execution
states and, accordingly, we consider the type of an object at a textual point to be
the set of c l ~ s e s that the object can assume over all possible executions.

For each textual point in the program, we construct an abstract object graph
(AOG) summarizing aU memory states occurring at this point during some program
execution. Since the AOG models the memory structure of the program it keeps
track of the value of instance variables, local variables, and possible aliasing relations
among them.

Definition 2. An AOG is a pair (N, A) where N is a finite set of abstract objects,
A N x N x L is a finite set of arcs and is a set of labels. The summary nature of
the AOG entails that multiple, identically labeled, arcs can originate from the same
node.

An AOG typically contains r n q information. An arc bbeled xy originating at
node x and ending at node y means that at run-time the value of instance variable xy
of the object corresponding to x map refer to y. We later modify this representation
to include musi information with the addition of creation counts.

Definition 3. The type of a variable is a set of AOG nodes. Let n E N, I G L and
A c N x N x L.The typeofvariablelofnoden in (N , A) is (rial (n,m,I) E A)

-The set of abstract objects, N, is syntactically derived from the program being
andysed. This set, a progam wide constant, remains static over the analysis whereas
the set of arcs, A, is dynamic.

D&nition4. Let p be a program, N itp set of nodes and L its variable names.
The abstract object graphs of p, AOGp = { (N , A) I A N x N x L), form a
.complete lattice. Let g1,gz E AOGp and gl = (N ,A1) ,g2 = { N , A a) . The partial
order relation, gl gz, is defined as set inclusion of the set of arcs, A1 C Az.
The lattice meet operation, gl U $2 = { N , A , U Aa). The least element, 1 is the
disconnected graph, (N,{)), and the greatest element, T, is the fully connected
graph, (N, N x N x L).

Note that we require N to be finite, but that the object graphs summarized by
an AOG are unbounded. This apparent contradiction is solved by allowing nodes to
summarize many objects of the same class. With this approximation we can limit
the size of the graphs without unnecessary loss of type information. The choice of
happing from object gaphs to AOGs is crucial to the efficiency and precision of the
analysis. We now present two abstract domains effecting different mappin@.

5.1 Class Object Graphs

Objects of the same class are likely to be used in the same way in a program, i.e.
their instance variables are likely to refer to objects of the same type. Based on this
observation it seems reasonable to define a domain where objects of the same class
are represented by a single node in the graph.

Definition 5. A class object graph (COG) maps all dynamically created instances
of a class onto a single graph node.

In a COG, finite sets of constant objects, such as the logical vdues true and false
are represented by nodes in the graph, one for each constant. Infinite, or large, sets
of constants are abstracted so that one graph node represents all values in the set.
For our toy object-oriented language the constant nodes are: true, false, n i l and
In t .
The following program is used to illustrate the analysis with COGS. For the sake

of clarity, we omit the abstract object nodes for methods in the discussion.

class Point
x, y

methods
set-x(v) is

x := v
set-y(v) is

y := v

main
var p, p' is

p := Point new
p' : = Point new
if read-int = 0

thenp set-x(1)
else p set-yip')

p' set-yl0)

For this program, N = (P&nt,nil, Int} with Point being the COG node reprs
senting objects created at the two textual instances of Point new. The sequence of
graphs inferred by static analysis is shown 111 Figure 2. GI describes the state after
creat'ion of the two Points, their instance variables refer to nil. Ga portrays the

X X X

I n t n i l I n t n i l

'31 Ga G3 G4

Fig. 2: A sequence of dass object graphs

state if the then- branch of the if is traversed. The arc x from Point to the integer
node Int appears as a result of the assignment to instance variable x of p. Gs shows
the effect of taking the elsebranch. Now y refers to an integer or to a point; the
self-loop appeared because we have mapped both Points onto the same node and
thus lost JI distinction between them. The same graph could represent a recursive
structure, e.g. a linked list, where p is the next pointer.

The result of the analysis is the COG Gq, obtained by taking the meet of Ga
and 4%. At this point we know that x has type {Int,nil), and that y has type
{Ini, Point, nil).

COGS have been used extensively to analyze object-orienkd program3 110, 11,
131. Unfortunately, the polymorphism inherent to the objectoriented style of pr-
gramming proves to be a serious problem since objects of the same class often are
used with instance variables of different classes[lO].

5.2 Textual Object Graphs

To improve the accuracy of static analysis we alter the analysis domain so that
different objects of the same class do not necessarily share the same node in the
graph. Only objects created at the same textual point share abstract representations.

Delinition 6. A teedual object graph (TOG) maps all instances of a class created at
the same textual point in a program onto the same graph node.

% =3

Fig. 3: Textual object graphs

'In our previous example, there were two textual creations of Point, one for p
and one for p'; the TOG associates a graph node to each: Pointl to p and Pointa
to p'. Therefore N = (Pointl, Point2, nil, Itat) and the anaIysis infers the sequence
of graphs d Figure 3. G4 dearly shows that there are no recursive structurm in this
program and that the type of y is dierent for p and p' .

In general, this abstract representation yields better results than those obtained
with COGS. Also, the types given to instances of ucontainer" classes, e.g. lists, is
more accurate and does not require special treatment as in (101.

5.3 Creation Counts

A problem common to both domains is that assignment is defined as an additive
operation-arcs are never removed. For example, the arcs connecting each node to
nil never disappear horn the graph. A compiler using the results of the analysis
will have to assume that every instance variable of an object can dways refer to
nil. Due to this "sticky'' beherviour, the quality of the analysis will only deteric~
rate as the number of poasible vdum increases. This problem, and specifically nil-
valued instance variables, has marred previous attemp& to provide a type system
for ob ject-oriented programs (10, 11, 131. (Some authors have defined type-safety so
that programs may legally send message to nil 11 11.)

The work of Chase et aI. [3] points to a simple mlu tion. The key observation is:
if it can be determined that an assignment will affect all the objects represented
by a single node in the graph (must information), then it is pwible to update the
graph destructively. In the analysis of the example program with the TOGS, all
assignments have this property since each node represents only one object. This is
the static criterion for destructive updak. (A node may repreent many objects if the
creation point is in a loop, or if it occurs in a method that is called more than once
along mme control flow path.) We note in passing that a node with no incoming
arcs r e p m n t s objects which are not referenced and, therefore, can be statically
de-al1ocated:The graph model is extended in the following way.

Dehition 7. An cziended ubstkci object graph ia a triple (N, A, C), where (N , A)
is an AOG and C = N x (0, 1, oo] maps nodes to their creation counts. {0,1, m)
is totally ordered by the relation 0 < 1 < w. We define the commutative addition
operator @ to be

[addl O ~ X = x l a 1 = clo m e 2 = oo

and the wbstraction operator 8 to be

Every node starb with a count of 0. Each time a node's creation point is encountered
along a path in the program, the count is incremented.

When two control flow paths meet, the greatest creation count is retained for
each node in the graph. Mote that although creation counts can be applied to COGS,
the gains are negligible since it is likely that the counts for all classes will quickly
converge to oo.

5.4 BOG Operations

We now define abstract operations corresponding to assignment, object creation and
control flow merge. These definitions apply to both textual object graphs and class
object graphs.

Merging of graphs, used for confluence of control flow paths, is implemented
by the lattice meet operation which is simply the union of the arcs and the point-
wise maximum of creation counts. For a given N, and graphs gl = IN, Al , CI) and
ga = (N, Az, Ca), the merge of gl and $2 is:

Assigning a set of objects S to an instance variable 1 of n updates the arcs of the
corresponding graph node, and is written (gj(n, I) H S). If the creation count of fa is
not w then the update replaces the current set of arcs labeled I with S, otherwise S
is simply added to the existing arcs. Thus, for a given N, and graph g = { N, A, C)
the operation is:

[assign] (g((n;l}AS) = if (n , i x) ~ C then (N , A U A f e w , G)
else (N, Upd U New, C)

whereNew = ((n , m , i) 1 m E S),
U p d = { {ti', mf, I f) G A j n f n', 1 # I')

Creation of an object is modelled by adding arcs pointing to nil to the corresponding
node and increasing the creation count of la. The function labels returns the set
of instance variable names of a node. For a given N, and graph g = (N , A , C) the
operation is:

[create] metrte(g, n) = (. . . ((N, A, Cf)l(n, 11) - {nil)) . . . I(n, J k) ++ {nil})

6 A Flow Analysis Algorithm

Programs are analyzed using conventional flow analysis [I]. The first step is to con-
struct a controI flow graph representation of the program. Each arc in this graph is
assigned a flow function which computes the effect of executing the code in its source
node, assuming that its target node is to be executed next. Finally, all control flow
nodes are assigned initial values in the lattice, and the Aow functions are applied to
the values until a fixpoint is reached.

In the abstract object graph, methods and the main program are treated as
abstract objects with outgoing arcs for each variable; in the case of methods, the
graph contains arcs for self , the argument, and the return result. These objects
correspohd to activation records that may be created at run-time. The creation
wunt associated with such nodes is initially set to zero, incremented on entry to the
method and decremented on exit.

We now describe the flow functions wociated with a given control flow arc a.
Assume that the source node of a is in the control flow subgraph corresponding to
method m0. The flow functions take the abstract object graph {N, A, C) a argument
and return an updated AOG.

6.1 Flow Functions for Assignment Statements

Assigning a value to a variable involves finding all abstract objects that may be af-
fected and updating their arcs accordingly. Here we consider assignments to instance
variablbles; the treatment of local variables is similar.

When value is assigned to an instance variable, ivar, it potentially affects all
objects tbat may be bound to se l f . Let Selves = (n I (mo, pa, self) E A) be this
set. The general form of a flow function for an arc leaving such an assignment is:

A(N, A, C). U ((N, A, C) l(n, ivar) r Values)
n€Se[ue#

where Values is the set of abstract objects corresponding to value. The functions
for the various types of assignable values are as follows:

If the value is a newly created object, the creation count far the creation point
must be updated prior to updating the arcs. Let cp be the AOG node corresponding
to the creation point, the flow function is:

value
const ant

local variable
instance variable

6.2 Flow Functions for Message Sends

Values
{ c m s t } , where const is the AOG corresponding to value

{ n f (mo,n,value) E A)
(n I (s, n, value) E A, s E Selves }

Message sends involve creation of AOG arcs representing the binding of parameters
and locals on entry to, and removal of those arcs on exit from, the called method.
The implicit argument s e l f is bound to the set of possible receivers that match
the class of the cdled method. An extra local variable, result, is used to hold the
return resuit; its value is required if the message send is an assignment statement.

Let Arguments and PReceivers be the sets of arguments and possible receivers,
respectively. They are determined in the same manner as Yalzres above. Now consider
a Aow graph arc corresponding to a call from rno to some method implementation
ml , the latter having a single local variable local. Let classof (0) be the function
returning the class of the abstract object o. The flow function for this arc is:

[calr] A(N, A, C) . (((({ N , A, C') , I(ml, self) I-+ Receivers)
I (ml , formal) - Avguments)

I(ml, local) H {nil))
I (ml , result) H {nil))

whereC'={(m~,c$l)I(rn~,c)~C) U { (f3 ' ,d)€CIfZ'#ml) ,
Receivers = { r I r E PReeeivers , cltassof (T) = classof (ml))

For the return flow arc, assume the result is assigned to the instance variable ivar.
The resulting flow function is:

[return] X(N, A,C). U (g'l(n,'ivarl) r Result)
nfSelves

where g' = ((N,A,Cf)I(ml, self) - {))
IIna1, f-4 0)

I(m1,local) 0)
1(m, result) ++ {I),

c t = ((m i , e 8 1)) { m , c) ~ C) U ((n ' , d } ~ C I n ' # m ~) ,
Result = { r I (mI, r, result) E A)

6.3 Flow Analysis

Performing the analysis is now straightforward. The flow value stored at each node
in the control flow graph represents what is known about the abstract objects and
variables at entry to the node. All are initially assigned 1. These v a l u ~ are then
iterated through the functions on the arcs, with the meet operator applied when
control flow paths merge. This process is continued until a fixpoint is reached. In
the algorithm below, the function pred returns the set of predecessors of n and fi,n
is the flow function on the arc from i to n.

FOILEACH nude pa an the cota at rot flow graph DO
n := I

REPEAT
FOREACH node m in the conimljlow graph DO . := . u (u fi,n@))

i~prcd(I)
UNTIL a fixpoint i s reached.

7 More Precise Analysis with Call Strings

Because the effect of a method depends strongly on its calling environment (a . e. the
type of the receiver and of the arguments), analysis illformation froin different call
sites should be kept separate during the analysis. We propme tagging the abstract
object graphs with the sequence of call-points (control flow graph call nod-) through
which they were propagated. The abstract state of the progam at a point inside
method m becomes a set of pairs (call-palh,g}, where g represents an instance of
the abstract object graph and calbpaih is the sequence of method call points that
brought control to na.

Since static analysis requires finite repr~entations and call chain sequences for
methods cannot, in gene~al, be bounded, we represent the call-path by a finite ap-
proximation. One possibility is a regular expregsion whose elements are method call
points, similar to the abstract interpretation described in [8]. The alternative de-
scribed here approximates a cdl path by the Iast k calls in the sequence [12], for

some s d l value of k. A11 paths which are identical in the last k calls will have
their state information merged thus creating some approximation in the results.
The choice of h determines a trade-off between accuracy and the computational ef-

rn fort of performing the analysl. Meet traditional interprocedural data flow analysis
algorithm [I] implicitly use t = 0, rand [Ill use e n t i a l l y the same method with
t = 1 .

The extended analysis algorithm is a generalization of the one given earkr. At
any textual point p in the program, the algorithm derives a set of (eolCpalli,g) pairs
that describes the pmsible object states and corresponding call strings that may hold
at that point in the program. If the statement a t that point is any operation other
than a method invocation, the g component of each (call-path, g) pair is updated as
in the previous analysis method.

Assume that we are currently analyzing method wl the p r w m point p is a
message send and ml is an implementation of that mmessage. The state description
szt at this point is S and f,,,, is the %ow function defined in the previous section.
The flow function on the arc from p to rnl appends p to all call-strings and applies
the abstract object graphs to f,,,, .'

At the end of analysis of a method, the state description set must be propagated
back to each applicable invocation point. If p' is the next node in mo and mi is the
last point in rnl , bhen the flow function on the arc from mi to p' prefix& the symbol
'?', the unknown call point, to each call string and shortens them to lengkh k by
dropping their suffix.

The start node of rnl is the tazget of multiple control flow arcs. Let Zn be the eet of
all incoming (caldpblr,g) pairs. The call strh* in this set are shortened to lengkh
k by dropping the earliest call point in the sequence and the TOG values in pairs
with identical call strings are merged.

[entrv] { {s, 9) 1 = UI g' I 8 = 1 kj (8'1 g') xn

At p', there will in general be several description sets propagated back from differ-
ent implementations of the message. The resulting description sets, Res, must be
combined with description sets that describe the p r o g m state immediately before
the call, S to remove '?' from the call strings, and all pairs with identical call-striags
are merged.

[resume] AS.{ (a HS, g) I = U{ gf 1 (? -I+s,gf) E Z ~ S , (a f t s , d ') E S I I

The ith element of string s is written as sli]. The concatenition of strings s and t is
denoted by s ++ t. A prefix of length n of a string z is denoted by x n whiIe a suffix
of length n is denoted by x 1 n.

class Point
var x, y
methods

A. r := v
set-y (v) is

3. y := v

main
1. var p is
2. p := Point new
3. p set-x(true)
4. if read-int = 0
5. then p set-x(1)
6. else nil

Fig. 4: A Sample Program for Analysis

We now present a trivial example to clarify the analysis algorithm and the use of
cdl strings. The sample program for analysis is shown in Fiure 4. To simplify the
description, the strttements in the main body are numbered 1 through 6 and the two
executable statements inside the Point class are lettered A and B. We use the name
pi to represent a program point immediately before statement i , and p! to represent a
program point immediately after statemnt 8'. With this naming convention, several
program points coincide (e.g. fJ, = p3) and we will pass over such duplicates in the
explanation.To keep the example as simple as possible, we will limit the length of
call string3 to 1. The analysis algorithm starts with an initial state description at
statement 1 of (?, 1) where '?' is a call-string of length 1 that indicates that the
caller is unknown (the caller is actually the operating system), and I represents the
bottom graph in the TOG lattice. Pictorially, I i~ the disconnected graph drawn as
graph Go in Figure 6. The analysis algorithm might produce the sequence of state
description sets shown in Figure 5.

make a p s over main progmrn:

Point pr :
Point pz :
Point P3 :
Point pr :
Poi=* ps :
Point pi :
Point pe :
Point :

Point p i : {(P~,G~),(P~,G~)}
propagate results buck to call points
and repeat anal~sis as required:

Point pr : ((?,G)}
Point ps : ((?,G7)}
Point pP; : ((?,Ga))
Point pp : {(?;G7)}
Point p i : {(?,Gs)}

repeat paps over method set-x

Point PA : {b, Gs), (~ 5 , G5))

. . . and nothing more changes

Fig. 5: Analysing the program of Fig. 4

G, Gp

Fig. 6: Abstract Object Graphs. Creation counts are displayed under node names.

8 Discussion

Previom work in analysis of object-oriented languages has produced m m relatively
imprecise analysis techniqu~. We have therefore developed better techniques. Fur-
thermore, we provide a means for the compiler implementer to choose an appropriate
trade-off between precision and the cost of the analysis.

Separate compilation remains a challenge for any form of interprocedural static
analysis. On one hand we would like to keep program units separate and minimize
the -compilation effort. On the other hand we need to be able to analyze as much
as possible of the source program to generate efficient code. k a r c h towards a
modus vivendi continua.

References
. -

I. A, V. Ah, R: S e t s and J. 'D. Ullrnan. Catnpiler~: ~ * i n + ~ i i + Tdn'iquee and Todd,
Addison-Wesky, 1986.

2. C. D. Chambers. The-Desiga and Implementa~on of the Scif Campitm, an Optimizing
Compiler for Object-Orisnted Lunguages. Ph. D. Thepis, Stanford University, 1992.

3. D: R. -chaw, M. Wegmiu, and F. K. Zadecli. Anal* of Pointers and Structures. Ia
SI&PLAN'SO Con$ on pr&rnming Language D+e%lgn-amd hnpiementation, 1990.

4. P. Coasot and R. C o w t . Abstract hkrprdation: A Unified Lattice Modd for Static
Analysis of Program by Construction OT Approximation of Fixpoints. In Conf. Rec. of
the 4th ACM Synp. on Principla of Programming Languages, 1977.

-5. A. Goldberg and G. Robson. Smalltak-80 - The Lunguage and it5 Implemsndation
Addison-Wesley, 1983.

6. L. ~arrison. The Inter~rocednral Andy& and ~ n ~ o & a t i c ~arall~lilation .of Scheme
. P~grams., ~ech~cd%poi t GSRD Rpt. 860; Uaiversity of Thois,. Wrbana, HI., 1989.
7. k V. H e m . .Type-Infence for 'Oysmd. Technischer Bericht A ht/9l, lJ$versitii,t

des Saarlades, k991.
8. R. 'N. Horspool and J. Vibek. Static Andysis of Postkript. In Proceeding of the

~ntemetiond ~onjemnce in computer ~angua&, 1992. . > -
9. P. Bud*. A Semantic Mqdol of.Referena Corntin& ald its Abstraction. In k m c t

Interpretdon of Declarative Languages. Ellis ~ a r w d , ~ 1 9 8 7 .
10. R. E. 3ohnson. Type4ecking Smdtdk: In Q0P5LA786 Cod. Proc., 1986. '
11. J. Palsberg and M. I. Schwaxbzbach. Object-0riented.T~~ Inference. In OOPSLAW

Conf. 2Pr~c . , 1991.
12, M. Sharir and A. Pnueli. Two Approaches to Interprkedural Data Flow Analysis. Jn

S. S. Munchnick and N. D; Jones, editors, Progrum Flow Analgais: n e o r y and Appli- . ..-,
- cations. Prentice-Hall, 1981. '

13. N. Snznki. Infezting Types- in Smalltalk. In Inonf. Rec'. of &he 8th A CM Synp. on
Principles of Pmgr&m#ng Lunguages, 1981.

