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Abstract. Dynamically typed object-oriented languages must perform dynamic
binding for most message sends. Typically this is slow. A number of papers have
reported on attempts to adapt C++-style selector table indexing to dynamically typed
languages, but it is difficul to generate space-efficient tables. Our algorithm generates
considerably smaller dispatch tables for languages with single inheritance than its
predecessors at the cost of asmall dispatch time penalty.

1 Introduction

Message passing isthe heart of object-oriented programming. Messages are ubiquitous,
often appearing in the most basic operations such as assignment or integer addition. It
is therefore not surprising that fast message dispatch is a major issue for implementa-
tions of object-oriented languages. The difficulty lies in finding an implementation
technique which is fast but does not sacrifice space efficiency.

Message passing refers to the process of binding a message to an implementation.
This binding depends on the value of the message receiver, or rather, on the class of the
receiver. If known at compile-time, the message send reduces to a procedure call. Oth-
erwise, the binding isresolved at run-time. Thisis called dynamic binding or late bind-
ing. In object-oriented programming, dynamic binding is an expensive and frequent
operation. Itisthereforeworthwhileto try to minimizeits overhead. There are two com-
plementary ways to do that, either by binding at compile-time, or by speeding up
dynamic binding. The first approach is motivated by the observation that the majority
of call sites have a constant receiver class. In other words, they are always bound to the
same method. Static binding of those call sites would not affect the program’s seman-
tics. But the difficulty liesin deciding which call sites can safely be bound statically. In
the best case, only a portion of the calls will be bound statically [10], [12], [14]. The
second solution is to reduce the cost of dynamic binding. Efficient implementations of
dynamic binding have been the focus of much research, yet it is customary to see mod-
ern dynamically typed object-oriented languages spend more than 20% of their time
handling messages. This paper takes the second approach.

A generic dynamic binding algorithm can be defined as follows:
1. Determine the message receiver’s class;
2. if the class implements a message with this selector, execute it;
3. otherwise, recursively check parent classes;
4. if no implementation is found, signal an error.
The agorithm either succeeds and executes a method, or it fails and signals a type
error. The difference between dynamically typed languages and statically typed onesis
that former detect type errors at run-time while the latter prevent them at compile time.



The most straightforward implementation of dynamic binding is called dispatch table
search (DTS). With DTS, look-up proceeds exactly as outlined above. Although con-
ceptually smple, DTS it is too slow to be practical. Its overhead must be reduced. A
number of techniques have been proposed to thisend. They can be classified in two cat-
egories. static techniques and dynamic techniques. Satic techniques use information
obtained by analysis of the program source to pre-compute part of the look-up. These
techniques guarantee that message dispatch incurs a small and constant! overhead.
Dynamic techniques adapt to the program run-time behaviour by caching the result of
previous look-ups. Their speed is a function of the cost of probing the cache and of the
cost, as well as frequency, of cache misses. On current hardware, static techniques are
faster and more predictable. Their drawback isthat they require static type information
without which space requirements become unrealistic. For instance, applying a static
techniqueto the OBJECTWORKS SMIALLTALK library would generate 16M B of tables.

This paper presents afast and intuitive technique for generating compact selector-
indexed dispatch tables for dynamically typed languages with single inheritance. The
criteriaused to evaluate such algorithms are (1) dispatch table size, (2) generation time,
(3) cost per call site of a message send, (4) message send speed and (5) number of
machine registers required by the message send operation. Our agorithm has the fol-
lowing characteristics. For the OBJECTWORKS class library (776 classes and 5,325
selectors) the algorithm generates 221 KB of dispatch tablesin 1.5 seconds. The cost of
message passing istwo memory references, oneindirect function call, acomparison and
abranch, that is 4 instructions at the call site and 3 instruction in the prologue of each
method. It takes 11 cycles on a SPARC and requires 3 registers. This represents a
marked improvement over previous algorithms.

2 Canonical Implementations of Dynamic Binding

We present two extremesin the spectrum of dynamic binding algorithms: dispatch table
search (DTS) and selector indexed dispatch tables (STl), and discusstheir relative mer-
its. The algorithms presented here have been implemented in hand optimized assembly
language [16]. To get ameaningful comparison of dispatch speed, we chose a concrete
target architecture: the SUN SPARC processor. For space comparisons we use data
extracted from OBJECTWORKS SMALLTALK; areal-lifeclasslibrary. We use the hier-
archy of Figure 1 to illustrate the algorithms. (Class names are in upper case and meth-
odsin lower case. Table 1 gives the addresses of the methods.)

2.1 Dispatch Table Search (DTS)

The obvious way to implement dynamic binding isto follow the letter of the definition
of method look-up. This means, search classes one by one, in the order specified by the
inheritance rules, until a method is found or the list of classesis exhausted.

The speed of DTS depends on two factors: the cost of searching adispatch table and
the number of tables to search. Hash tables offer a good compromise between access

1. Actually message passing is performed by executing a constant number of instruc-
tions, instruction cache misses can account for considerable differencesin time.
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Figure 1 Sample class hierarchy. Table 1 Method addresses.

speed and memory requirements and are, thus, used for implementing dispatch tables.
Each class hasits own hash table of <selector, method address> pairs. The look-up pro-
cedure hashes the method sel ector to obtain an index into the table. If the selector in the
table matches, control is transferred. Otherwise, a collision has occurred and the table
must be probed until the method isfound or an empty entry is encountered. In the latter
case, search continues in the table of the superclass. The cost of DTS is a function of
the cost of probing the hash table, of the average number of probes per table, and of the
average number of tablesvisited per message send [5]. For SMALLTALK-80, a message
requires, on average, 8.48 hash table probes[2]. The cost of DTS is estimated as 250
cycles[13], [10]. Although very slow, DTS s space efficient. For thisreason, it isused
as a backup strategy in SMALLTALK-80 [3], LISP[11] and SELF [10]. Driesen [6] esti-
mates the memory requirements of DTS to be 2MH, where M is the number of methods
in the system and H is the hash table overhead (133%). OBJECTWORKS has 8,780
methods, and thus 93 KB of hash tables.
A call siterequirestwo instructions: acall and aload of the selector number (if small

enough to be loaded in one instruction). The code size for the 50,696 send sites of the
reference library is thus 405 KB, which brings the total space consumption to 498 KB.

2.2  Selector Indexed Dispatch Tables (STI)

Indexing is an extreme form of hashing which favours access time over space. Selector
table indexing (STI) is an attractive candidate for implementing dynamic binding
because it delivers fast constant time look-up, and is conceptually simple. For asystem
of C classes and Sselectors, the ideaisto construct atwo-dimensional array of Cby S
entries. Classes and selectors are given consecutive numbers on each axis. The array is
filled by pre-computing the look-up for each class and selector. Array entries contain a
reference to the method implementing the message, or to messageNotUnderstood. The
look-up procedure is reduced to an indexing operation on this array. Figure 2 givesthe
STI tablesfor the hierarchy of Figure 1.

The look-up code is short and can be inlined, thus avoiding one control transfer. A
concrete ST procedureis shown below. The variable self holds a pointer to thereceiver.
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Figure 2 Class hierarchy and STI dispatch tables.
The ‘# symbol is prefixed to constants. The class is accessed at a fixed offset. Notice
that all offsets are hard-wired in the code.
load [self + #class_offset], class
load [class + #selector_offset], method
call method
nop
Taking into account aone cycleload latency, alook-up requires T = 6 cycles. The
delay slot after the call isfilled with a no-op, so the code size is 4 instructions per call
site. The data size is an array of StC addresses. The space for dispatch tables for the
reference library is 16.5MB and the space required for call sitesis 811KB.
Note that STI is inherently global and static. Tables are computed for a complete
system, and are very sensitive to changes in the class hierarchy. Such changes may
affect the entire system, forcing regeneration of tables and changing offsetsin the code.

3 Practical Implementations of M essage Passing

3.1  Static Techniques

Static techniques follow the principle of STI but with smaller tables (with ST, tables
aretypically more than 90% msgNotUnderstood). The schemes described in this section
assume that objects are represented by records with one field referring to a shared dis-
patch table, Figure 3, which is an array of method references.
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Figur3 A Point object.

3.1.1 Virtual Function Tables (VTBL)

In the context of statically typed programming languages such as C++ [9], virtual func-
tion tables (VTBL) are dispatch tables with no empty entries. VTBL dispatching takes
two memory references and one indirect function call before method specific code is
reached. For each class, the dispatch table is constructed by assigning consecutive indi-
ces to al the selectors it understands and storing the corresponding method addresses
in the table. These offsets are scoped by their defining type. Thisallows any selector to
have adifferent offset in independent classes (this also makes separate compilation eas-



ier). Inheritance adds one additional constraint: subclass conformance—a subclass
must be compatible with its superclass. If the same compiled code is going to manipu-
late instances of the class as well as instances of subclasses, subclasses should share
their parent’s memory layout. The dispatch tables for the sample hierarchy are shown
in Figure 4. This technique assumes the availability of static type information.
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Figure 4 Virtual Function Tables.

For large systems, the memory requirements of VTBLSs can be high. The reason is
that classes inherit considerably more methods than they define. There are few differ-
encesin the VTBLSs of subclasses and most of their content isredundant. A C++ imple-
mentation of the OBJECTWORKS hierarchy (with all methods virtual) would require
868K B of dispatch tables, and roughly the same amount for the code.

3.1.2 Dispatch Table Compression Techniques

Virtual function tables can not be used for dynamically typed languages as we lack the
type information. Instead we will try to compressthe STI tables. Previous work on dis-
patch table compression techniques fallsin two categories: graph coloring schemesand
row displacement schemes. Graph coloring schemes attempt to minimize the length of
each table by ajudicious choice of indices. Row displacement schemes compress dis-
patch tables by merging all tables into one master array in away that takes advantage
of their sparse nature.

3.1.3  Selector Colouring (SC)
Selector colouring merges rows which do not have differing significant values in any
column position. The goal isto find a partition of al rowsinto groups, or colours, such
that rows of the same colour do not collide. A partition with the minimal number of
groups represents an optimal compression of table rows. If the tableis still sparse, col-
umns can be compressed in a similar way. This problem is equivalent to finding the
minimal coloring of a graph. Since the problem is NP-complete, heuristics are used to
find approximate solutions [6], [4], [1]. For the purpose of compressing dispatch table,
msgNotUnderstood entries are considered “empty”. Two selectors can share the same
offset, if they are understood by two digoint sets of classes. Although much smaller
than STI, the compressed table still contains a non negligible proportion of empty
entries, which may be as high as 43%. Selector colouring for the sample hierarchy of
Figure 1 isshownin Figure 5.

Aswith any compression technique, gainsin space are paid for by additional effort
to access elements. Offsets assigned to more than one selector are called aliased offsets.
Thedispatching procedureisidentical to STI, except that aliased offsetsrequire an extra



i
a b cd e f g j k |
0

o1][02]0s]|jo4][ 0] 0 0
o1} (05} 03]] o] 0s][07][[os][ 0] [0
01)[|ogll|03f 04l 10][11]12]([13] 14
15] 09][26]]/04] [10] [ 11][12][17] 18][ 19
01] (09 03]|[oa][10][ 11]][20] [21] [22]] 23] ]24] [25
01] oo} 03] [04] 10][11]|[12]| 13][14][ O] 28] 27]

Figure 5 Selector Coloring.
check to make sure that the implementation being called matches the requested sel ector.
Consider the following send: object f. The compiler may translate thisinto:
table = object->dt;
method = table[5]; — the offset of fin Figure 5is5.
method(object);

Whether this is correct or not depends on the class of the object. If the object isan
instance of B the message send isvalid. On the other hand, if it isan instance of classC,
the message will quietly execute the code of h. So, when accessing aliased offsets, it is
necessary to check that the selector at the call site matchesthe implementation. The dis-
patching code is as follows:
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call site: method prologue:
1.table = object->dt; 4.if (s |= #The_selector_number)
2.method = table[ #color_offset ]; 5. messageNotUnderstood();

3.method(object, #selector_code, ...);

Figure 6 Dynamic binding with Selector Colouring.

Thecalling codeis 4 instructionslong and 3 instructionsin the prologue. It executes
in 9 cycles. Datasizeis Ogc = 1.15MB and code size is 916 KB.

3.1.4 Row Displacement (RD)

Row displacement [5] is another way of compressing STI dispatch tables. It slices the
two-dimensional STI table into rows corresponding to classes and fits the rows into a
one-dimensional array so that non-empty entries overlap only with empty ones (Figure
7). The agorithm minimizes the size of the resulting master array by minimizing the
number of empty entries, 33% in [6] and if the table is dliced according to columns the
table can be filled to 99.5% [7]. When the row displacement scheme is applied to the
sample hierarchy, Figure 7, the result is asingle array with overlapping tables.
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Like selector colouring, row displacement requires extra work to access table ele-
ments. At run-time, depending on the class of the receiver, a different starting offset in
the master array will be used. From that starting index, adding the selector offset will
yield the address of a method. The code for alook-up is the same as that of SC. Table
space is Ogp = Oy * 101% = 819K B and code spaceis 916K B.

3.2 Dynamic Techniques
Dynamic techniques speed up message passing by caching results of previous |ook-ups.
Caching relies on temporal locality: a cache is profitable when its contents are used
numerous times before being evicted. Programs exhibit good locality when the same
message is sent repeatedly to same class. Empirical data suggests that pure object-ori-
ented languages have better locality than hybrid languages [10]. But the very nature of
caching techniques means that performance can vary between the time of a successful
probe, and the time required for handling a miss and updating the cache.

There aretwo major approachesto caching: oneisto have one global look-up cache,
and the other isto have small inline caches at each call site.

3.2.1 Global Look-up Caches (LC)

Thistechnique usesaglobal cache of frequently invoked methods to accel erate look-up
[2], [3], [13]. The cacheis atable of triples (selector, classidentifier, method address).
Hashing a class and a selector returnsa dot in the cache. If the class and selector stored
in the cache match, control is transferred to the method. Otherwise, a backup dispatch-
ing technique is used, usually DTS, and the cache is updated with the new triple before
transferring control to the method.

The cache hit rate depends heavily on program behaviour (85%—95% hit ratios have
been reported [3], [10]). Therun-time memory required issmall: usually afixed amount
for the cache plus the overhead of the backup technique. Hash functions and cache
insertion routines are discussed in [2]. To get alower bound for the speed of hashing,
we used a simple hash function that takes an exclusive OR of the class and the selector
[7]. Even with this simple function, look-up is unacceptably slow. A hit executes 19
instructions before method specific code is reached. The cost of acache missisthe cost
of DTS, plus hashing, and a few extra cycles to update the cache.

3.2.2 Inline Caches (I C)

Inline caching stores the result of the previous look-up in the code itself taking advan-
tage of the type locality at call sites. In SMALLTALK, 95% of sites have constant
receiver classes [3], [13]. IC changes the call instruction itself. It overwrites it with a
direct invocation of the method found by the default system look-up procedure. Thus,
ahitisonly alittle more expensive than aprocedure call. The secondary look-up is per-
formed by a global look-up cache and, finally, by dispatch table search. The cost of a
missistherefore the cost of LC plusthe overhead of overwriting the calling instruction.

A cache hit takes 7 cycles, a miss takes an average of 113 cycles [7] with a 95%
average hit rate [13]. The speed of inline caching is 12.3 cycles, giving a marked
improvement over DTS and LC. Inline caching has reasonable space requirements: 4
instructions per call site and 3 instructions per method prologue. The space required by



ICis O,c = 94KB. The code size is 4c+3M = 916KB. The speed is computed by T, =
hitTime c* hitRate + (1-hitRate)* (82+T ).

A recent study conducted by Driesen, Holzle and the first author [7] suggests that
inline caching and its cousin, polymorphic inline caching, can outperform VTBL-style
dispatching on modern architectures. This is because an indirect function call causes a
break in the pipeline, while a hit with inline caching does not stall the processor. Thus
even statically typed programming languages may find it profitable to combine IC or
PIC (described below) with VTBL.

3.2.3  Polymorphic Inline Caches (PIC)

Polymorphic inline caches (PIC) represent a straightforward extension of inline caches
[10]. Studies have shown that |Cs behave badly for polymorphic call sites; measure-
ments of the SELF-90 system showed that it spent up to 25% of itstime handling cache
misses [10]. PICs alleviate that problem by caching more than one type at each poly-
morphic call site. For each site, asmall stub routineis created. This stub grows as more
receiver classes are encountered. The performance of PICs drops for call sites with a
great number of receiver classes. In these cases it may be better to adopt a fall-back
strategy like IC.

4 Compact Dispatch Tables, afirst look: CT-94

How do we compress the dispatch tables while, at the same time, retaining most of the
speed-up obtained by the dispatch table technique? In an earlier paper [14], we pro-
posed the compact dispatch table (CT-94) techniques. We give a short description of
CT-94 asit isthe basis for the work described in this paper. A detailed account can be
foundin [14] and [16]. Thetechnique appliesfour different optimizationsto thefull STI
tables, and a pre-processing and a post-processing step.

4.1 Factoring Out Conflict Selectors

The first step of our algorithm performs pre-processing, separating the STI tables of
Figure 2 into two. One contains normal selectors and the other contains conflict selec-
tors. A conflict selector is a selector that is implemented by two classes unrelated by
inheritance. A second set of dispatch tables, Figure 8, called conflict tables, is created
and conflict selectors are assigned offsets in these tables. The compiler must generate
code to access either anormal or a conflict dispatch table depending on the selector.
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Figure 8 Factoring conflict selectors.



4.2 Dispatch Table Trimming

Dispatch table trimming removes trailing empty entries from dispatch tables. After
trimming, the dispatch tables can differ in size; therefore the compiler should generate
code to prevent indexing errors. Figure 9 shows the trimmed tables.
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Figure 9 Trimming the tables.

4.3  Selector Aliasing

After trimming, dispatch tables still mostly consist of empty entries. Selector aiasing
packs tables by assigning the same offset to different selectors with the constraint that
each selector has a digjoint set of classes. For dynamically typed languages, aliasing
introduces additional run-time type checks. These checks are detailed below. Aliasing
is applied to the dispatch tables to yield the tables shown in Figure 10.
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Figure 10 Aliased dispatch tables.

4.4 Dispatch Table Sharing

Identical dispatch or conflict tables can be shared. Usually, many conflict tables can be
shared but only asmall portion of dispatch tables. The potential for sharingisfully real-
ized only in conjunction with table entry overloading (below). In our running example,
only one of the conflict tables can be shared, as demonstrated by Figure 11. This opti-
mization entails no additional run-time cost.

4.5 Table Entry Overloading

Table sharing mergesidentical tables. But the majority of dispatch tables differ, if only
in asmall way, from their parents' tables. The idea is to merge sufficiently “similar”
tables by overloading entries with multiple implementations. This is done by walking
the inheritance tree and trying to merge each child table with its parent’s. The degree of
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Figure 11 Shared dispatch tables.
similarity is a parameter of the algorithm. Figure 12 shows one possible overloading:
Table A and B, and C and F are overloaded.
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Figure 12 Overloaded dispatch tables.

4.6 Cleaning up

The last step performs post-processing. The dispatch tables are laid out in memory,
superclassesfirst, followed by subclasses. Thisisshownin Figure 13. Notethat the con-
flict table for class A is empty, we overload it with B's table.
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Figure 13 Complete dispatch table layout.

5 Run Time Issues

The space gained by overloading hasto be balanced against the additional run-time cost
of retrieving entries. Overloaded entries point to a small dispatch routine which must
select one of the overloaded classes. When there are many different classes overloading
the same entry, the speed of dispatching deteriorates. The code sequence for anon over-
loaded entry is 8 instructions long and executes in 11 cycles. For an overloaded entry
the code sequence is 8 instructions long plus 4 per subclass test. A call to overloaded
entry executesin 13 cycles plus4 per subclasstest. Each cal siterequires 5 instructions.
The speed is thus Tet.94 = (1- overload) * 11 + overload * (13 + 4 avgTests) = 11.9
cycles. Tablesizeis Oct.94 = 158KB.



5.1 What'swrong with CT-94?

At first sight CT-94 seems pretty good. The overhead of STI has been brought down to
158 KB. The dispatch speed is much faster than DTS. But, there are several hidden
problems. Firstly, the formula for speed assumes that each table entry is used with the
same relative frequency. But, recall that some entries are aliased to multiple selectors
and/or overloaded with multiple methods. If we assume, instead that every method is
equiprobable, then overloaded entries are used more frequently and speed drops 12.8
cycles. Secondly, when we consider space usage, we should not overlook that if over-
loading decreases table sizes, it increases code size because stub and prologue code has
to be generated. A better measure of data size includes prologue and stubs with the
tables, as shown in Figure 14. As overloading increases, gains become small. Finally,
perhapstheworst newsisthat the per-call site overhead of CT-95is5instructions. This
means that for the OBJECTWORKS system dlightly more than 1 MB of send code is
required. Table 3 gives the true cost of CT-94: it is slower than SC and RD, and the
gainsin size are small. The only marked improvement is the running time of the algo-
rithm as the table can be computed about 100 times faster than with RD. The average
number of tests, avgTests, is 2.28 and the frequency of overloaded callsis 16%.

speed | Ter.g4 = (1- overload) * 11 + overload * (13 + 4 avgTests) | 12.8 cycles
datasize Oct.94 378 KB
code size 5¢c 1MB

Table 2 Compact Dispatch Tables (CT-94).

6 Compact Dispatch Tablesrevisited: CT-95

The design goals of the new dispatch table algorithm were to reduce code size, obtain
constant time message dispatch speed, improve the algorithm running time and retain
good table compression rates. This section presents an algorithm which meets these
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Figure 14 CT-94 tables for OBJECTWORKS SMALLTALK.



goals. These improvements have been made possible by the addition of a new tech-
nigque, which we call partitioning, to our toolbox of optimizations. It turns out that par-
titioning makes overloading and trimming redundant; without overloading message
passing becomes a constant time operation. Space requirement are about the sasme aswe
lose alittle table compression but gain on code size.

6.1 Partitioning

Theideaof partitioning isto improve sharing of dispatch tables by allowing the sharing
of portions of tables. Consider a subclass which inherits one hundred methods from its
superclass and only redefines five of them. Would it not be simpler to have one table
with the ninety-five common entries, and two separate tables with the five methods that
actually differ?

The principle of partitioning isto cut dispatch and conflict tablesinto partitions. The
table allocation procedure tries to share (or overload) partitionsinstead of entire tables.
Actually, we were aready doing that in CT-94, but with only two partitions: the dis-
patch table and the conflict table. Increasing the number of partitions does not really
change dispatching. The compiler must only know, for each selector, to which partition
it belongs and its offset in that partition. The data structure for a class consists of an
array of pointersto partitions. Each partition is atable of methods addresses. This orga-
nization isillustrated in Figure 15. This figure shows a class composed of 6 partitions.
Thefirst partition is an array of 4 method addresses.

pt:

o

partll:

HEmmmm———

e

Figure 15 Objects, classes, partitions and methods.

The structure of classes and partitions has to be regular. Each class must have the
same number of partitions, otherwise it would be necessary to perform a bound check
before accessing partitions. Also, al partitions accessed from the same offset must have
the same size. In the exampl e above, this means that the size of thefirst partitionisfour
for al classesin the hierarchy. Thisimplies that tables can not be trimmed (4.2).

CT-95 proceeds as follows. The new algorithm starts by creating dispatch and conflict
tables as discussed in section 4.1, aliasing and sharing optimizations are applied at the
same time. Thus we start with Figure 10. Then, dispatch tables and conflict tables are
cut into equal sized partitions. Partitions which have equal contents can be shared. Fig-
ure 16 shows dispatch tables divided in four partitions of size 3. Conflict tables have
been divided into two tables of size 1.

The compression rate might be further improved by re-ordering selectors and choos-
ing individual partition sizes that maximize sharing opportunities. But, in order to keep
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Figure 16 Table partitioning.
table generation time low, we picked the most straightforward technique. The size of
the table is such a small factor in the overall space requirements (compared to the per
call site overhead) that the additional effort would not be worth it.

Choosing afixed partition size means that there will be some trailing empty entries
and thus some amount of wasted space. See, for instance, partitions E, and F, above.
Again, in practice, the amount of wasted space isanegligible portion of the overall sys-
tem.

For a practical algorithm we need to know what partition sizes give best results,
whether it is possible to retain the same partition size for different hierarchies, and
whether to allow overloading of similar partitions or just sharing of equals.

What is the best partition size? Smaller partitions improve the chance that two par-
titions will be similar. Thus, the best partition size for reducing sheer table size is 1.
Then, the dispatch tables have as many entries as there are method definitions. The
problem isthat every class needs a data structure with one pointer per partition. Reduc-
ing partition size increases the number of partitions and thus the size of class objects.
We tested the algorithm with various table sizes, partition of 14 entries seem to give
good results [16].

6.2 Results

Doing away with overloading and trimming allows more regular code to be generated
for message passing. To send a message it is necessary to load a partition, access it at
the right offset to retrieve a method address, load a selector code, and transfer control
to the method. At the call site we simply check that the selector code matches that of
the implementation and then execute the method body. This is exactly the same code
sequence as that of the non-overloaded entries of CT-94. It consists of 5 instructions at
the call site 3in the method prologue, and it executesin 11 cycles, see the appendix. For
OBJECTWORKS, we have 221 KB of datain 23 partitions in total (18 dispatch and 5
conflict). The prologue code size is 62 KB and the call site overhead is still at 1 MB.
Table 3 summarizes those results.



Speed Ter.0s 11 cycles
datasize Oct.95 221 KB
codesize 5c 1MB

Table 3 Compact Dispatch Tables (CT-95).

6.3 Inline Caching and Compact Dispatch Tables (IC+CT-95)

Adaptive techniques such asinline caching perform better than static techniques on cer-
tain computer architecture [7] because of their more predictable control flow. But, they
rely on DTS astheir backup look-up strategy, which means a high misstime. Could we
improve IC by replacing DTS with CT-95? On current architectures, the branch miss
penalty is not large enough to warrant combining the two techniques. Table 4 summa
rizes the characteristics of the combined method.

speed Tic+cT-05 = hitTime ¢ * hitRate + (1-hitRate) * (82 + Ter.g5) 113 cycles
datasize O| C+CT-95 = OCT-95 221 KB
code size 4c + 3M 916 KB

Table 4 IC + CT-95.
7 Space, Time and Efficiency Measurements

Space. The compression ratesfor the five static table-based al gorithms discussed in this
paper are compared in Figure 17 for OBJECTWORKS SMALLTALK-80. Both compact
dispatch table algorithms (CT-94 and CT-95) produce good compression. Notice that
even for amedium sized system likethisone, C++-style selector indexed tables (VTBL)
requirein excess of 800K B of tables. It isalso interesting to note that Driesen’srow dis-
placement technique (RD) provides almost as good compression asV TBL with no type
information. Selector colouring (SC) requires considerably more space.
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Figure 17 Table sizes.

Thedatasizeisonly one contributor to the space cost of these algorithms. Code size
has to be accounted for to give a meaningful comparison. We have computed the total
number of call sitesfor the OBJECTWORKS system (50,696 call sites) and used that fig-
ure to compute the size of the dispatching code. Thisis shown in Figure 19. Note that




these figures represent an upper bound as many call sites can be resolved statically by
an optimizing compiler. It isinteresting to note that CT-95 performs better than CT-94
because the latter had to include alarge number of code stubsto resolve overloading. It
is also interesting to note how code size dominates space costs.

Memory Requirements

- Code

Figure 18 Memory requirements of dispatching algorithms

The data sizes of a number of other libraries have also been collected, they shown
in Figure 19. The numbers for the large systems (Visuaworks 2.0 and Digitalk 3.0) are
quite interesting, for both of these libraries VTBL and RD require in excess of 2.5MB.
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Figure 19 Table sizes.



Time. Weimplemented our algorithm in approximately 1,500 lines of C. The algorithm
completes dispatch table allocation between 1.5 seconds (NextStep) and 4.8 seconds
(Visualworks 2.0). The timeisthe sum of user and system time on a SPARCstation-5.
Speed. We compare the speed of the different dispatching techniques based on the hand
coded assembly code of Appendix A and [7]. VTBLS (on the target architecture) have
the best performance. SC and RD are followed by CT and IC. As expected, DTS isfar
more expensive. Thisdatais given in Figure 20.
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Figure 20 Comparing dispatching speeds.
Registers. We compare the number of registers required by the various dispatch
sequences. We assume that one register is used to hold the pointer to the receiver and
that argumentsare passed in registers. VTBL, |C and SC require 2 registers. CT and RD
require 3 registers and our implementation of DTS requires 7 registers.

8 Further Optimization of Message Passing

The results presented in this paper can be optimized further with some modest static
analysis [14] of the system. First and foremosgt, if the type of avariable can be pinned
down to asmall set of classes which provide only one implementation of the requested
message sel ector, the message send can be bound statically [12] [14]. If theanalysiscan
discover that there exists no valid execution path in the program which creates any
instance of aclass, then nothing needsto be generated for that class (thiswill bethe case
for purely abstract classes). Any method which is never redefined does not need to be
put in the dispatch tables. The compiler will generate some subclass checking code in
the prologue to type-check the receiver and the method can be bound statically. Simi-
larly, selectors which are never called need not be put in dispatch tables and methods
implementing them need not be compiled. OBJECTWORKS consists of 8,780 methods
and 5,325 selectors. Out of these, trivial static inspection reveals that 4,154 selectors
have unique definitions and 1,197 selectors are never called. Calls to unique selectors
can be bound statically and the selectors need not appear in the dispatch tables. In a
dynamically typed language, we still need to perform run-time type checking of the
receiver. But type test can be very fast as shown in [17]. Static binding reduces the size
of dispatch tablesto 160 KB and code sizeis reduced to 910 KB.



9 Conclusion

Thereisagap in performance between statically typed programming languages such as
C++ and dynamically typed ones such as OBJECTIVE-C. This paper improves on pre-
viously published techniques for implementing message passing in dynamically typed
object-oriented programming languages with single inheritance. Our algorithm gener-
ates dispatch tables which are consistently smaller than C++-style VTBLS. It provides
constant-time fast dispatching for dynamically typed languages. Thus further reducing
the gap between statically typed and dynamically typed languages.

References

[1] André, P., Royer, J.-C.: Optimizing Method Search [10]H6lzle, U., Chambers, C., Ungar, D.: Optimizing
with Lookup Caches and Incremental Coloring. In Dynamically-Typed Object-Oriented L anguages
OOPSLA'92, 1992. With Polymorphic Inline Caches. Proc. ECOOP'93,

[2] Conroy, T., Pelegri-Llopart, E.: An Assessment of Springer-Verlag, 1993.

Method-L ookup Caches for Smalltalk-80 Imple-  [11]Kiczales, G., Rodriguez, L.: Efficient Method Dis-
mentations. In Smalltalk-80: The Language and its patch in PCL. In LFP’ 90, 1990.

Implementation, Addison-Wesley, 1985. [12]Plevyak, J., Chien, A.A.: Precise Concrete Type In-
[3] Deutsch, L.P., Schiffman, A.: Efficient Implementa-  ference for Object-Oriented Languages, Proc. OOP-

tion of the Smalltalk-80 System. In Proc. 11th SLA’94, Portland, Oregon, October 1994.

POPL, Salt Lake City, UT, 1984. [13]Ungar, D.: The Design and Evaluation of aHigh

[4] Dixon, R.,McKee, T., Schweitzer, P., Vaughan, M.: Performance Smalltalk System. PhD Thesis, The
A Fast Method Dispatcher for Compiled Languages MIT Press, 1987.
with Multiple Inheritance. Proc. OOPSLA'89, New [14]Vitek, J, Horspool, R.N., Uhl, J.: Compile-time
Orleans, LA, Oct. 1989. analysis of object-oriented programs, Proc. CC'92,
[5] Driesen, K.: Selector Table Indexing & Sparse Ar- Paderborn, Germany, 1992, LNCS 641.
rays. Proc. OOPSLA’93, Washington, DC, 1993.  [15]Vitek, J, Horspool, R.N: Taming Message Passing:
[6] Driesen, K.: Method L ookup Strategies in Dynami- Efficient method lookup for dynamically typed ob-

cally Typed Object-Oriented Programming Lan- ject-oriented languages. In ECOOP’ 94, LNCS 821,
guages. M.Sc., Vrije Univ. Brussel, 1993. Springer-Verlag, 1994.
[7] Driesen, K., Holzle, U., Vitek, J.: Message Dispatch [16]Vitek, J: Compact Dispatch Tablesfor Dynamically
on Pipelined Processors. In ECOOP 95. Typed Programming Language. M.Sc. Thesis, Uni-
[8] Karel Driesen, Urs Holzle, "Minimizing Row Dis- versity of Victoria, 1995.
placement Dispatch Tables'. In OOPSLA'95. [17)Vitek, J., Horspool, R.N.: Fast Constant Time Type

[9] Ellis, M.A., Stroustrup, B.: The Annotated C++ Ref- Inclusion Testing. Submitted, Sept. 1995.
erence Manual. Addison-Wesley, 1990.

Appendix A: CT-95 dispatch sequence

The code sequence for dynamic binding with CT-95 islisted below. The constants #table_offset,
#selector_offset and #selector_color can be determined at compile-time.

call site: method prologue:
1. load [object + #class_offset], class 5. cmp #expected_color, color
2. load [class + #table_offset], table 6. bne #message_not_understood
3. load [table + #selector_offset], method 7. nop
4. call method 8. <firstinstruction of target method>
5. setlo #selector_color, color



