
Flow Grammars October 31, 1994 1

Flow grammars – a flow analysis methodology

James S. Uhl and R. Nigel Horspool

Dept. of Computer Science, University of Victoria
P.O. Box 3055, Victoria, BC, Canada V8W 3P6

E-mail: juhl@csr.uvic.ca , nigelh@csr.uvic.ca

Abstract: Flow grammars provide a new mechanism for modelling control flow in

flow analyzers and code optimizers. Existing methods for representing control

flow are inadequate in terms of both their generality and their accuracy. Flow

grammars overcome these deficiencies and are well-suited to the specification and

solution of data flow analysis problems.

1 Introduction

Source programs must be subjected to sophisticated and extensive optimization to approach the

full potential of modern computer architectures. Many powerful optimizations rely onstatic anal-

ysis of the source code. Examples of such static analysis include: live variable analysis [7], vari-

ous forms of constant propagation [10,20], and aliasing analysis [4]. All of these static analyses

may be realized as instances offlow analysis problems. They share the following general frame-

work [10]:

1. A model of the program defines points where information is to be determined, as well as how
control may flow between those points at run-time.

2. A set ofabstract states representing the desired static information is created. In the case of
constant propagation, for example, each abstract state is a partial mapping from variable names
to values. Generally thisinformation space is a structured as a lattice or semi-lattice [5,10]. For
some analyses, this set of states may even depend upon the structure of the model used to rep-
resent the program [17].

3. A set offlow equations relating the abstract state of the program at one point with the points
that may immediately precede or follow it during execution.

The goal is to find a least fix point solution to the set of equations. The solution is then used to

guide the optimization process.

This paper describes a new formalism which we callflow grammars, developed for use in the

Flow Analysis Compiler Tool (FACT), an on-going research project at the University of Victoria

Flow Grammars October 31, 1994 2

[19]. Specifically, we demonstrate how context-free flow grammars may be used to model both

intra- and inter-procedural control flow; we subsequently show how to interpret a context free

grammar as a set of data flow equations; and we give an approach for solving these equations.

Finally, we demonstrate that programming language control constructs form a hierarchy which

corresponds in a natural manner to a hierarchy of grammar classes.

2 Program executions

This section motivates the use of grammars to model control flow. The essential idea is to repre-

sent each possible execution of a program as a string of symbols, called anexecution path, where

each symbol corresponds to a fixed run-time action that may be made by the program during exe-

cution (e.g., an assignment). Following the framework of denotational semantics, each run-time

action may be viewed as a function transforming one program state into another. In aconcrete

semantics the program state consists of the values of all variables, as well as the input and output

streams; such states are calledconcrete states. Static analyses typically define anabstract seman-

tics where program states contain only the information needed to infer facts about the concrete

state at various points of execution; these states are calledabstract states. Since these facts must

be true regardless of which path is followed on a given run, static analyses must consider all pos-

sible executions of a program. A mechanism for representing a (potentially infinite) number of

execution paths is needed. Recursive set equations, where each set contains zero or more execu-

tion paths, satisfy this requirement. These equations correspond to grammars in formal language

theory.

2.1 Execution paths

An execution path represents a single execution path through part of a program. Acomplete exe-

cution path represents a single execution of an entire program. Consider the program in Figure 1,

where program points are indicated by numbers to the left of the code. Program point 4, for exam-

ple, occurs between the assignments “f:=f*i ” and “i:=i-1 ”. Each execution path may be

viewed as a sequence of program point pairs. For this program there is one complete execution

path (though a given static analysis may not be able to determine this fact):

(1,2) (2,3) (3,4) (4,5) (5,6) (6,3) (3,4) (4,5) (5,7) (7,8)

For better readability, we abbreviate the path description to:

Flow Grammars October 31, 1994 3

t1 t2 t3 t4 t5/6 t6 t3 t4 t5/7 t7

The decision at theif statement is embodied in the symbols t5/6 and t5/7: when control proceeds

from point 5 to point 6, the true branch has been taken; when control proceeds from point 5 to

point 7, the false branch was taken. In this formulation, an execution path is simply a string of

symbols, each of which represents one or more run-time actions.

Figure 1. Example Pascal program.

2.2 Representation

To perform optimization, a compiler needs to know the (abstract) state of the program at each

point p irrespective of what particular execution path was taken to get to p. Thus, a compiler must

consider theentire set of possible execution paths to compute the abstract state at each point in the

program.

Suppose Si is the set of execution paths starting from point i in a program and ending at the end of

the program. Then the control flow of the source program yields a set of relationships among

these sets. For a backwards analysis of the example program, these relationships may be repre-

sented by the family of set equations, as shown in Figure 2. Theleast fixed point (lfp) solution of

these equations yields the set of execution paths from each point to the end of the program. Note

that there is only one path from point 6 to the end of the program, “t6 t7”, and, correspondingly,

the lfp solution of S6 = { t 6 t7 } and S7 = {t 7}. The loop in the program (points 3 through 6)

implies that there are an infinite number of possible executions, and thus execution paths in the

sets S1,S2,...,S6 each contain an infinite number of paths.

1

2

3

4

5

6

7

8

program ex(output);
label 10;
var i, f:integer;
begin

i := 3;
f := 1;

10: f := f * i;
i := i - 1;

if i>1 then
goto 10;

writeln(f)
end.

Flow Grammars October 31, 1994 4

Figure 2. Execution path equations for the example program for use in a backwards
analysis

In a forward analysis, information is known at the start of execution and must be propagated for-

ward through the program. This is represented by equations that the “mirror” the backwards anal-

ysis equations, as shown in Figure 3. Here, S1 is the start of the program, and consequently its

least fixed point solution contains only the empty execution path,ε. Similarly, S2 contains only

the execution path t1, since there is only one path from the start of the program to point 2. The top

of the loop, at point 3, introduces a union of paths, one entering the loop from outside (point 2)

and the other from the bottom of the loop (point 6). Again the lfp solution to these equations has a

structure defined by the equations that yields only execution paths representing possible execu-

tions.

Figure 3. Forward analysis execution path equations for the example program

2.3 Semantics

Given a set of equations describing execution paths, along with semantic functions for each sym-

bol, it is possible to define a generalized program semantics that takes into account the behaviour

of all possible executions. The idea is define semantic functions forsets of execution paths. Start-

ing with the set S1={ε} in Figure 3, for example:

[[{ ε}]]= λS.S, the identity function

and, thus, [[S1]]=λS.S. For S2, the semantic function for S1 must be composed with the meaning

of the set {t1}:

S1 = {t 1} • S2
S2 = {t 2} • S3
S3 = {t 3} • S4
S4 = {t 4} • S5

S5 = {t 5/6} • S6 ∪ {t 5/7} • S7
S6 = {t 6} • S3
S7 = {t 7}

where A• B = {α β | α∈A, β∈B}

S1 = {ε}
S2 = {t 1} • S1
S3 = {t 2} • S2 ∪ {t 6} • S6
S4 = {t 3} • S3

S5 = {t 4} • S4
S6 = {t 5/6} • S5
S7 = {t 5/7} • S5
S8 = {t 7} • S7

Flow Grammars October 31, 1994 5

[[S2]]= [[{t 1}]] ° [[S1]]

= [[t1]] ° (λS..S)

= [[t1]]

Here the semantics of the singleton set {t1} is composed with the identity function, which is just

the semantics of the singleton set itself. From above, the semantics of a single execution path may

be determined by composing the semantic functions of the constituent symbols. In this case, just

t1. Thus, [[{t1}]]= [[t 1]].

When two sets are merged in a union, as in the equation for S3 above, themeet of the correspond-

ing functions must be computed. This is typically thepoint-wise meet, ∧:(L→L)→(L→L), of the

functions, defined as:

f1 ∧ f2 = λS.f1(S)∧f2(S)

where∧:L→L is the meet operator of the original lattice. In the case of S3, the equation is:

[[S3]]= ([[{t 2}]] ° [[S2]]) ∧ ([[{t 6}]] ° [[S6]])

Figure 4 shows the complete set of forward analysis equations for the example program. The goal

of static analysis is to compute the portion of the least fixed point functionals for each of these

equations needed to determine the abstract state at each point in the program.

Figure 4. Semantic equations for forward analysis

2.4 Generating execution paths with a grammar

The equations in Figure 2 correspond exactly to the regular grammar in Figure 5. What have pre-

viously been called “symbols” are now terminals in a grammar. Similarly, the variables in

Figure 2 are now non-terminals.

[[S1]]= [[{ ε}]]
[[S2]]= [[{t 1}]] ° [[S1]]
[[S3]]= ([[{t 2}]] ° [[S2]]) ∧ ([[{t 6}]] ° [[S6]])
[[S4]]= [[{t 3}]] ° [[S3]]
[[S5]]= [[{t 4}]] ° [[S4]]

[[S6]]= [[{t 5/6}]]° [[S5]]
[[S7]]= [[{t 5/7}]] ° [[S5]]
[[S8]]= [[{t 7}]]° [[S7]]

Flow Grammars October 31, 1994 6

Figure 5. Grammar generating execution paths for example program

The set of strings generated by each of the non-terminals in this grammar is equal to the lfp solu-

tion of the corresponding equation above. Note also that non-terminals at the end of each produc-

tion act ascontinuations, indicating where execution is to proceed.

3 Definition: flow grammar

A flow grammar is a quadruple G=(ΣN, ΣT, P, S) where:ΣN is the set offlow non-terminals, ΣN,

corresponding to the program points;ΣT is the set offlow terminals corresponding to run-time

actions such as assignments; P is a set offlow productions of the formα ::= β, whereα∈ΣΝ
+ and

β∈(ΣT∪ΣN)*; and S is theflow start symbol and corresponds to the beginning of the program.1

3.1 Example: interprocedural control flow

Interprocedural analysis requires a context-free flow grammar to model the matching of calls and

returns. Figure 6 shows a small Pascal program which is used to demonstrate interprocedural data

flow analysis in the next section. Flow productions modeling the example program are shown in

Figure 7. Of particular importance are the productions corresponding to the procedure calls,

“S4 ::= t4/7S1 t10/5S5” and “S8 ::= t8/7S1 t10/9S9”. Both of these productions have an embedded

non-terminal, S1, representing entry to the procedure being called. Terminals t4/7 and t8./7 repre-

sent the actions that occur on procedure entry from points 4 and 8, respectively. Similarly, t10/5

and t10/9 represent the actions that occur upon return to the respective call sites.

1. Σ* is the set of all strings overΣ, including the empty stringε; Σ+ is the set of all non-empty strings overΣ.

S1 ::= t1 S2
S2 ::= t2 S3
S3 ::= t3 S4
S4 ::= t4 S5

S5 ::= t5/6S6
S5 ::= t5/7S7
S6 ::= t6 S3
S7 ::= t7

Flow Grammars October 31, 1994 7

Figure 6. Example Pascal program.

Figure 7. Flow grammar corresponding to program in Figure 6.

Note that procedure calls are handled naturally in the semantic equations, in the case of the call

from the main program, we have:

[[S8]]= [[{t 8/1}]] ° [[S1]] ° [[{t 6/9}]] ° [[S9]]

3.2 Discussion

It is interesting to consider the relationship between the Chomsky hierarchy and various program-

ming language constructs. The boundary between the context-free (type 2 in the hierarchy) and

context-sensitive (type 1) flow grammars is important because the former admit the straightfor-

ward translation to flow equations shown above, but the latter do not.

A regular flow grammar (type 3) corresponds directly to a flow graph, and is therefore capable of

representing the same intraprocedural constructs, including if/then/else, loops, and gotos to (con-

stant) labels. Label variables are somewhat anomalous. At the expense of increased size, a regular

flow grammar can precisely model intraprocedural control flow containing only simple label vari-

ables. The idea is to encode the current state of all label variables into each non-terminal of the

1

2

3

4

5

6

program example(output);
var f,i:integer;
procedure nfact;
begin

if i<=1 then
f := 1

else begin
i := i-1;
nfact;
f := f*i

end
end;

7

8

9

10

(* this is an incorrect
implementation of
factorial *)

begin
i:=5;
nfact;
write(f)

end.

S1 ::= t1/2S2
S1 ::= t1/3S3
S2 ::= t2 S6
S3 ::= t3 S4
S4 ::= t4/1S1 t6/5S5
S5 ::= t5 S6

S6 ::= t6
S7 ::= t7 S8
S8 ::= t8/1S1 t6/9S9
S9 ::= t9 S10
S10::= t10

Flow Grammars October 31, 1994 8

flow grammar. This results in a finite number of non-terminals, because there must be a finite

number of simple label variables, each of which can assume a finite number of label values. When

an assignment to a label variable occurs, the productions ensure the continuation non-terminal

encodes the correct state. Note, however, that label variables in arrays and other dynamic struc-

tures cannot be precisely tracked in this manner using a regular flow grammar (although conser-

vative approximate tracking that takes account of aliasing is possible).

Context-free flow grammars add the key capability of modeling procedure calls and returns, mak-

ing them suitable for many interprocedural flow analysis problems. A finite number of simple pro-

cedure variables may be directly encoded into the non-terminals similar to the encoding of label

variables above. Goto statements whose (constant) target is not local cause premature termination

of one or more activation records, including their suspended continuations. Surprisingly, this can

be modeled with a context-free flow grammar by creating productions that generate prefixes of

execution paths that eventually end with a production representing the non-local goto. Ginsburg

and Rose show that the language of all proper prefixes of a context-free language is itself context-

free [6], validating the assertion that such control flow is still context-free; details relating this

result to flow grammar construction may be found in [19].

We note several important aspects of the flow grammar methodology:

1. Interprocedural and intraprocedural control flow are unified into a single all-encompassing
model.

2. Results from formal language theory are useful when projected into patterns of control flow.
For example, in-line expansion may be effected by the elimination of a production.

3. The structure of regular and context-free flow grammars naturally reflect a set of flow equa-
tions; a data flow analysis simply interprets the terminals and non-terminals in appropriate
domains.

3.3 Interprocedural data flow analysis: an example

Within a flow grammar, each non-terminal represents an execution point in the program. As

shown above, each non-terminal may be interpreted as representing thestate of the program at

that point. The state should, of course, capture just the information that is relevant to the data flow

problem that we are interested in. For the live variables problem, the state is usually described by

the set of variables that are live at a program point.

Flow Grammars October 31, 1994 9

Translating our example context-free flow grammar to a set of backwards flow equations (as

would be needed for solving thelive variables problem) yields the following family of equations:

As a concrete example of the general technique, we now consider the specific problem of deter-

mining if a variable islive at a given point in the program (i.e., there exists a path from that point

to a use of that variable without an intervening assignment to the variable). Forintraprocedural

live variables, the latticeL = 2V, whereV = {i, f}, suffices, so that each Si ∈ 2{i, f} . The meet oper-

ator ∧ is set union. With this interpretation and for the particular problem of live variables, the

effects of the terminals may be described by set equations corresponding to “gen” and “kill” sets

[1]; for example, t5 represents the execution of the statement “f:=f*i ” which kills f and then

generatesf andi , thus:

[[t5]] = λx . ((x – {f}) ∪ {f, i})

As described above, a richer domain is required for a preciseinterprocedural analysis. In general,

the effect of a statement inside a function depends on the environment of the function call. There-

fore, we use a domain whose elements have the formenvironment→ state to provide the values

associated with terminals and non-terminals of the flow grammar. For the live variables problem,

both the state and the environment may be represented by a set of live variables. I.e., the environ-

ment of a function call is the state at the point of call, in this case the set of variables that are live

on return from the function. Thus all values, for both terminals and non-terminals, belong to the

domain of functions, 2V→2V. However, it is unnecessary to compute the function values fully. We

only need to know the effects of statements inside a function for those invocation environments

that actually occur. Thus, our iterative approach for finding a fixpoint is demand-driven and, in

general, only partially computes the functions.

Our analysis uses the fact that no variable in the program is live at the point where the program

terminates. (If a program sets a status variable that could be inspected by the operating system on

return, such a variable would be deemed to be live at program point S10). The iteration to compute

[[S1]] = [[{t 1/2}]] °[[S2]] ∧ [[{t 1/3}]] °[[S3]]

[[S2]] = [[{t 2}]] °[[S6]]

[[S3]] = [[t 3]]°[[S4]]

[[S4]] = [[t 4/1]]°[[S1]]° [[t6/5]]°[[S5]]

[[S5]] = [[t 5]]°[[S6]]

[[S6]] = [[t 6]]

[[S7]] = [[t 7]]°[[S8]]

[[S8]] = [[t 8/1]]°[[S1]]° [[t6/9]]°[[S9]]

[[S9]] = [[t 9]]°[[S10]]

[[S10]] = [[t 10]]

Flow Grammars October 31, 1994 10

the functions proceeds as follows. Each value shows what is known about the various functions at

each iteration. Suppose that, in the course of an iteration, [[S2]] currently has the value

{ {f} →{}, {f, i} →{i} }. This would indicate that the function containing point S2 is currently

known to have two calling environments, {f} and {f, i}, i.e., in one set of calls to the enclosing

function, f is the only live variable on exit and in another set of calls, both f and i are live on exit.

When that function is invoked in the {f} environment, the set of live variables at point S2 is {};

similarly the calling environment {f, i} gives {i}. If the value of [[S2]] is shown as the empty set

Φ, this corresponds to the bottom element of the enriched lattice and means that no invocations of

the function containing point S2 have been processed yet.

Initially, we want to know what is live at the beginning of the program, and this is represented by

[[S7]]({}). That is, S7 is contained in the main program and the environment for the main program

is an empty set – no variables are live on exit. The demand for [[S7]]({}) triggers the addition of

{} →{} to [[S 10]], and initiates the first iteration. Note that the particular order in which values are

computed leads to rapid convergence; other orders will yield the same solution but will usually

require more iterations.

Reading from the final column of the table, we can deduce that there are no live variables at the

beginning of the program, since [[S7]] ({}) = {} (i.e., if there are no live variables at the end of exe-

a. And add element {f, i}→{} to set [[S6]]].

b. And add element {f}→{} to set [[S6]]].

State
Iteration Number

1 2 3 4

[[S6]] Φ { {f} →{f} } { {f} →{f}, {f,i} →{f,i} } { {f} →{f}, {f,i} →{f,i} }

[[S5]] Φ { {f} →{f,i} } { {f} →{f,i},{f,i} →{f,i} } { {f} →{f,i},{f,i} →{f,i} }

[[S4]] Φ { {f} →{} } a { {f} →{}, {f,i} →{} } { {f} →{i}, {f,i} →{i} }

[[S3]] Φ { {f} →{i} } { {f} →{i}, {f,i} →{i} } { {f} →{i}, {f,i} →{i} }

[[S2]] Φ { {f} →{} } { {f} →{}, {f,i} →{i} } { {f} →{}, {f,i} →{i} }

[[S1]] Φ { {f} →{i} } { {f} →{i}, {f,i} →{i} } { {f} →{i}, {f,i} →{i} }

[[S10]] { {} →{} } { {} →{} } { {} →{} } { {} →{} }

[[S9]] { {} →{f} } { {} →{f} } { {} →{f} } { {} →{f} }

[[S8]] { {} →{} } b { {} →{i} } { {} →{i} } { {} →{i} }

[[S7]] { {} →{} } { {} →{} } { {} →{} } { {} →{} }

Flow Grammars October 31, 1994 11

cution, then there are no live variables at the start of execution). This result is a simple application

of live variable analysis which proves that all variables are initialized before being used. The final

column also shows which variables are live at each program point. Given a function valueF for

some program pointp, then the set of variables that are live atp is computed as . For

example, the set of live variables at point S1 is {i}; in one calling environment, the set is empty

and in the only other environment, the set is {i}, taking their union yields the desired answer.

3.4 An iteration strategy

An obvious method for speeding convergence of the iteration is to ensure that whenever a compu-

tation is performed, as many as possible of its abstract inputs are already computed. This is pre-

cisely what the techniques of Jourdan and Parigot to solve “grammar flow analysis” problems

[9] yield. Combining these methods with the algorithm of Sharir and Pnueli [17, pp. 207-209]

results in an effective solution procedure. In essence, the flow grammar is partitioned into a set of

sub-components that encapsulate recursion, resulting in a directed acyclic graph. Iteration is then

performed by visiting the sub-components in reverse topological order.

3.5 Handling arguments to procedures

Arguments to procedures are, in general, handled by defining an appropriate lattice and mappings

for the call/return/exit terminals. The bit-vector technique of Knoop and Steffen [13], for exam-

ple, may be applied directly. As more than one flow analysis specification may be incorporated

into the compiler, determination of aliasing may be performed before subsequent analysis to

ensure conservative solutions.

4 Previous work

Previous work on control flow analysis is limited; most effort has been devoted to various aspects

of data flow analysis. As mentioned above, graphs are the most frequently discussed mechanism

for representing control flow [5,10,12,14,17] andgraph grammars [11] were considered for use in

FACT. Graph grammars are effective for representing hierarchical control structures, but cannot

handle the arbitrary control flow made possible by thegoto statement, and also cannot effectively

match calls with returns.

Y
X Y→ F∈

∪

Flow Grammars October 31, 1994 12

Languages with various flavours of procedure variables provide many challenges to effective flow

analysis. Weihl’s approach ignores local control flow effects to derive a conservative approxima-

tion of the possible values each procedure variable may have [21]. Shivers addresses the difficult

task of determining a control flow model for a Scheme program where all functions are bound

dynamically [18].

The task of specifying control flow in terms of syntax is addressed by Sethi’s plumb project [16].

In essence, plumb allows a continuation passing style semantics to be specified for a program-

ming language using a special function composition operator. Flow grammars can also be consid-

ered as representing control flow using continuations, but in a more direct manner.

Work on static analysis in the form of data flow analysis and abstract interpretation is extensive.

Performing flow analysis at the source level (“high-level data flow analysis”) for specific data

flow problems has been considered by Rosen [15] and Babich and Jazayeri [2,3]. Generalization

of various related flow analysis techniques into uniform frameworks includes the work of the

Cousots [5], Kam and Ullman [10] and Kildall [12]. Marlowe and Ryder provide an excellent sur-

vey of data flow analysis problems and the computational cost of their solutions in [14].

5 Discussion and future work

Our main achievement has been to integrate intraprocedural and interprocedural flow analysis in a

seamless manner. Flow grammars not only represent control flow effectively, but are directly

amenable to specifying data flow analysis problems as well. We argue that, in a general purpose

tool such as FACT, it is appropriate to begin with an accurate control flow model and lose preci-

sion at the data flow analysis stage; rather than lose precision even prior to data flow analysis by

constructing an inaccurate control flow model.

Flow grammars open up a variety of avenues for future research. Preliminary work on modeling

programs containing more diverse language constructs, such as exception handlers and bounded

numbers of procedure variables, is encouraging. Aside from unrestricted flow grammars, we are

also considering the use of two-level grammars to model the dynamic nature of procedure vari-

ables. While not discussed in this paper, we have found examples of programs for which control

flow is naturally modeled by Type 0 grammars.

Flow Grammars October 31, 1994 13

Work is proceeding on the algorithm to solve the flow problems generated from flow grammars.

Because FACT is intended to be general purpose, minimal assumptions are made about the data

flow analysis framework: that the lattice is of finite height and that all functions are monotonic.

Currently under investigation is an algorithm which computes the effect of a function call using

iteration for up tok different elements in the input domain, and then uses conservative approxima-

tions when necessary for subsequent inputs.

References

[1] Aho, A., R. Sethi and J. Ullman.Compilers, Principles, Techniques, and Tools, Addison-
Wesley Publishing, 1986.

[2] Babich, W. and M. Jazayeri. “The Method of Attributes for Data Flow Analysis Part I:Ex-
haustive Analysis,”Acta Informatica 10, 1978, pp. 245-264.

[3] Babich, W. and M. Jazayeri. “The Method of Attributes for Data Flow Analysis Part II:
Demand Analysis,”Acta Informatica 10, 1978, pp. 265-272.

[4] Cooper, K., K. Kennedy and L. Torczon. “The Impact of Interprocedural Analysis and Opti-
mization in theRn Programming Environment,”ACM TOPLAS 8, 4, October 1986, pp.
491-523.

[5] Cousot, P. and R. Cousot. “Abstract Interpretation: a Unified Lattice Model for Static Anal-
ysis of Programs by Construction or Approximation of Fixpoints,” 4th POPL, January
1977, pp. 238-252.

[6] Ginsburg, S. and G. F. Rose. “Operations which preserve definability in languages,”JACM
10(2), April 1963, pp. 175-195.

[7] Hecht, M.Flow Analysis of Computer Programs, Elsevier, 1977.

[8] Hudak, P. et al.Report on the Programming Language Haskell, 1990.

[9] Jourdan, M. and D. Parigot. “Techniques for Improving Grammar Flow Analysis,”
ESOP’90, LNCS 432, pp. 240-255.

[10] Kam, J. and J. Ullman. “Monotone Data Flow Analysis Frameworks,”Acta Informatica7,
1977, pp. 305-317.

[11] Kennedy, K. and L. Zucconi. “Applications of a Graph Grammar for Program Control Flow
Analysis,” 4th POPL, January 1977, pp. 72-85.

[12] Kildall, G. “A Unified Approach to Global Program Optimization,” (1st) POPL, October
1973, pp. 194-206.

Flow Grammars October 31, 1994 14

[13] Knoop, J. and B. Steffen. “The Interprocedural Coincidence Theorem,”CC’92.

[14] Marlowe, T. and B. Ryder. “Properties of Data Flow Frameworks,”Acta Informatica28,
1990, pp. 121-163.

[15] Rosen, B. “High-Level Data Flow Analysis,”CACM 20, 10, October 1977, pp. 712-724.

[16] Sethi, R. “Control Flow Aspects of Semantics-Directed Compiling,”ACM TOPLAS5, 4,
October 1983, pp. 554-595.

[17] Sharir, M. and A. Pnueli. “Two Approaches to Interprocedural Data Flow Analysis,” inPro-
gram Flow Analysis: Theory and Applications, Muchnick S. and Jones N. (eds.), 1981, pp.
189-233.

[18] Shivers, O. “Control Flow Analysis in Scheme,”PLDI’88, June 1988, pp. 164-174.

[19] Uhl, J. S.FACT: A Flow Analysis Compiler Tool. Ph.D. Dissertation, in preparation.

[20] Wegman, M. and F. Zadeck. “Constant Propagation with Conditional Branches,”ACM
TOPLAS 13, 2, April, 1991, pp. 181-210.

[21] Weihl, W. “Interprocedural Data Flow Analysis in the Presence of Pointer, Procedure Vari-
ables, and Label Variables,”7th POPL, January 1980, pp. 83-94.

