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ABSTRACT
Partial redundancy elimination (PRE) is a key technology for modern compilers.

However traditional approaches are conservative and fail to exploit many opportunities
for optimization. New PRE approaches which greatly increase the number of eliminated
redundancies have been developed. However, they either cause the code size to explode
or they cannot handle statements with side-effects. In this paper we describe a pred-
icated partial redundancy elimination (PPRE) approach which can potentially remove
all partial redundancies. To avoid performance overheads caused by predication, PPRE
is applied selectively based on a cost model. The cost analysis presented in the paper
utilizes probabilistic data-flow information to decide whether PPRE is profitable for each
instance of a partially redundant computation. Refinements of the basic PPRE transfor-
mation are described in detail. In contrast to some other approaches our transformation
is strictly semantics preserving.

Keywords: Partial Redundancy Elimination (PRE), Probabilistic Data-Flow Analysis
(PDFA), Predication

1. Introduction

Partial redundancy elimination (PRE) is an important optimization technique used
in compilers to improve the efficiency of a program. The objective of PRE is to
avoid unnecessary re-computations at runtime. The PRE transformation replaces
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the computations by accesses to temporary variables and initializes them at suit-
able program points such that the number of evaluations is reduced. In addition
to classical expression optimizations, several optimizations can be found in the lit-
erature which employ PRE as underlying technique. For example, PRE has been
successfully applied in compilers for high-performance systems where communica-
tion optimizations [6] and dynamic redistributions [7] use PRE as the underlying
optimization technique. PRE is also used for optimizations in RISC compilers. An
important example of a RISC optimization is the load-reuse analysis [2].

It has been observed that traditional approaches [11,8] are too cautious and fail
to take advantage of many opportunities for optimization. To improve the effective-
ness of PRE, new approaches have been developed that use speculation [5,4] and
code duplication [14]. Speculation uses profile information and inserts additional
computations (i.e. speculative computations) in the program. In contrast, code
duplication copies code and identifies information carrying paths. However, both
techniques raise concerns: (1) speculation is not always applicable due to possible
side-effects in expressions, and (2) code duplication may cause an explosion in code
size.

In this paper we introduce a novel transformation for PRE that can potentially
achieve a complete removal of all partially redundant computations without dupli-
cating code. Our new PRE approach is based on predication. A predicate controls
whether the value of a computation stored in a temporary variable is valid or not. If
the value of the computation is not valid any more, the predicate is updated. Com-
putations are conditionally executed depending on the predicate. If the temporary
variable does not contain a valid value, the value is re-computed.

Many recent computer architectures, including the Intel Itanium and the ARM,
provide predicated instructions. These instructions can, in some circumstances, be
used to implement the predication described in this paper. We discuss how our
PRE approach can take advantage of Itanium predicated instructions and provide
a brief code example.

Our transformation is guided by a cost-analysis based on probabilistic data-flow
analysis (PDFA) [10,13] that decides whether it is profitable to predicate a computa-
tion. Important features of our predicated partial redundancy elimination (PPRE)
approach are that (1) the control flow graph is not re-structured, (2) all partial
redundancies can be removed, and (3) our transformation is semantics preserving.

The paper is organized as follows. In Section 2 we motivate PRE with predica-
tion. In Section 3 the optimization is shown in detail. The basic transformation is
given and a cost analysis determines whether the transformation is beneficial to the
program performance or not. Section 4 surveys related work. Finally, a summary
is given in Section 5.

2. Motivation

Consider our motivating example in Figure 1(a). The control flow graph consists of
a branching statement inside a loop and four occurrences of expression a/b at nodes
B1, B3, B4, and B6. The evaluation of expression a/b at node B3 is partially
redundant, since the computation is redundant with respect to node B1, but not
redundant within the loop if the right branch with node B4 is executed. Similarly,
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if C1

x:=a/b;
B1:

B2:

B4:
a:=...

z:=a/b;

b:=...

B3:
y:=a/b;

if C2
B5:

B6:
x:=a/b;

B7:
print x;

if C2B5:

if C1B2:

B3: y:=ta/b;

B7: print x;

B4: a:=...

z:=a/b;

b:=...

ta/b:=a/b;

ta/b:=a/b;

x:=ta/b;

B1:

B6: x:=ta/b;

(a) Example (b) Speculative PRE

if C1B2:

B3: y:=ta/b;

ta/b:=a/b;

x:=ta/b;

B1:

if C2B5:

B7: print x;

B4: a:=...

z:=a/b;

b:=...

a:=...

z:=a/b;

b:=...

ta/b:=a/b;

y:=ta/b;

ta/b:=a/b;

x:=ta/b;

B6: x:=ta/b;

if C2

if C1B2’:

B3’:

B4’:

B5’:

B6’:

(c) Complete Removal by Code Explosion

Figure 1: Motivating Example.
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a:=...

z:=a/b;

b:=...

pa/b:=true;

pa/b?ta/b:=a/b;

x:=ta/b;

B6:

if C2B5:

if C1B2:

ta/b:=a/b;

pa/b:=false;

x:=ta/b;

B1:

B4:

pa/b?pa/b:=false;

pa/b?ta/b:=a/b;

y:=ta/b;

B3:

B7: print x;

Figure 2: PRE with Predication.

evaluation of expression a/b at node B6 is partially redundant, since it is redundant
with respect to node B3, but not redundant with respect to node B4. The two
remaining occurrences of expression a/b at nodes B1 and B4 are not (partially)
redundant and their evaluation is required.

Traditional PRE approaches like [8] fail to eliminate the partial redundancies
of expression a/b at nodes B3 and B6. This deficiency has been addressed by
the newer approaches to PRE. In Figure 1(b) an approach is illustrated that uses
speculation [5,4]. Let us assume that the left-branch of the conditional statement
within the loop is executed more often than the right one. Then the computation of
expression a/b can be speculatively eliminated at node B3 at the price of introducing
a new computation of a/b at the end of node B4. Note that the assignment ta/b :=
a/b does not exist in the original program and might influence program semantics.
Expression a/b is not a safe computation, since it can raise a “division by zero”
exception. If b should happen to be zero in some execution of the program, an
exception would occur. Hence, insertion of the expression on the right branch
might destroy program semantics and has to be dealt with in some way.

The flow graph of Figure 1(c) shows another approach which completely re-
moves all partial redundancies of the example in Figure 1(a) by employing code
duplication as introduced in [14]. The transformation duplicates nearly all nodes
in the control flow graph. After applying the transformation, two versions of most
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nodes exist in the graph. One node represents the state where the computation
is not available, while the other one represents the node where the computation
is available. Whenever the computation is destroyed, control is transferred from a
node where the computation is assumed to be available to a node where it is not.
Conversely, evaluation of the expression causes a control transfer to a node where
it is assumed to be available. In the first node of the example in Figure 1(c), the
expression a/b is computed and stored in ta/b. The loop on the left-hand side does
not destroy the computation of a/b and therefore can re-use the value of a/b inside
the loop. Whenever the computation is destroyed by node B4, the loop on the
right-hand side is entered. The program stays in the loop on the right-hand side
until a/b is re-computed. Then, the computation is available in ta/b again, and the
loop on the left-hand side is re-entered. Not only does the control flow graph become
irreduciblea, but the number of nodes has nearly doubled. In the worst case, code
growth is exponential in the number of expressions and the approach is not viable
in practice. To alleviate this problem, Bodik et al. [1] have introduced an approach
that limits code growth under the guidance of profile information. However, much
code would still be duplicated.

The key idea of PPRE is to save the value of the computation in a temporary
and to maintain a predicate which indicates whether the saved value is still valid
or not. Whenever the saved value is valid, subsequent evaluations of the expression
can be skipped and the saved value is loaded. In this way a complete removal of all
partial redundancies can be achieved without duplicating the code. In comparison
to speculative PRE, our approach is safe. No additional computations (other than
predicate tests and predicate assignments) are inserted into the program.

Consider Figure 2. Predicate pa/b records the availability or unavailability of
expression a/b. If the predicate pa/b holds, expression a/b is not available in tem-
porary ta/b and must be re-computed, otherwise the value stored in ta/b can be
re-used. Occurrences of expression a/b as well as statements that may block a re-
use of the computed value have to be handled properly. The transformation for
blocking statements is simple: Whenever a statement may block a re-use of an
expression, the corresponding predicate must be invalidated. For example, assign-
ments to variable a and b at node B4 in Figure 2 block the re-use of the stored value
of a/b and, hence, use of temporary ta/b is prohibited by setting predicate pa/b to
true. Since the assignment inserted for the first blocking statement with variable a
is dead, it can be removed and the second one for blocking statement with variable
b is sufficient, as seen in node B4.

The basic transformation is shown at node B3 in Figure 2. The original assign-
ment y := a/b is replaced with three statements, as follows. The first statement
pa/b?ta/b := a/b evaluates expression a/b and stores the value in temporary ta/b, if
predicate pa/b is true; otherwise the assignment is skipped. The second statement
pa/b?pa/b := false sets the value of predicate pa/b to false. And finally the third
statement y := ta/b assigns the temporary to the original variable.

The basic transformation as shown at node B3 can be optimized in several ways.
If the expression is not partially available, the predicates can be omitted, as is il-
lustrated at node B1. Since expression a/b is not partially available at node B1,

aFor some optimizations, irreducible control flow graphs have a negative impact.
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the assignments to temporary ta/b and predicate variable pa/b have not been pred-
icated. Further, if the predicate variable is dead, the assignment to the predicate
variable can be omitted. This is shown at node B6 where the assignment to pa/b

has been removed. And finally, if both above conditions hold, i.e. the expression
is not partially available and the predicate variable is dead, no transformation is
performed. This situation is illustrated by node B4 where the assignment z := a/b
remains unchanged in Figure 2.

The transformation is not free of cost and neither are all computations of the
expression replaced by predicated evaluations. Consider again our motivating ex-
ample in Figure 1(a) and a program run that performs 10 loop iterations taking
right branch (node B4), left branch (node B3), right branch, left branch, and so
on, starting with right branch and terminating with left branch. Since variables a
and b are modified within the loop, the expression has to be evaluated each time,
i.e. there is no redundancy at all. Since the left branch and the right branch are
executed 5 times, we get a total number of 20 executed assignments. In Figure 2,
however, we get a total number 35 executed assignments. Thus for the above pro-
gram run, PPRE does not pay off. On the other hand, if we consider a program run
which always takes the left branch within the loop, PPRE succeeds in completely
removing all evaluations of expression a/b within the loop. Therefore, the transfor-
mation needs to be guided by cost analysis based on profile information that decides
whether a predicated computation improves program performance or not.

3. Predicated PRE (PPRE)

In this section, we develop our PPRE approach. The optimization consists of
an analysis part which identifies profitable predication opportunities followed by a
subsequent transformation step. We start with a description of the transformation
first. Subsequently we develop a cost model and describe how the transformation
is guided by it. Finally, we present the analysis required for the cost model.

3.1. Basic Transformation

The basic transformation is shown in Figure 3. Basically every assignment
u := exp has to be replaced by the sequence texp := exp;u := texp where texp

denotes a temporary which is associated with term exp and is used to hold the
value of the last computation of exp. Additionally, we have predicate pexp which is
associated with the term exp as well and which indicates whether temporary texp

can be reused, or the term exp has to be recomputed. The important point is that
texp := exp is not executed each time. The term exp is evaluated only if necessary,
i.e. it is evaluated if the predicate pexp is true as indicated by the predicated
assignment pexp?texp := exp, as shown in case 1 of Figure 3. Next pexp is set to
false to suppress unnecessary re-computations. However, if a variable occurring in
exp is modified, the value held in texp cannot be reused any more, and the term exp
needs to be recomputed. This situation is described in case 2 of Figure 3. There
it is assumed that variable v occurs in term exp. Thus assigning a new value to v
requires a re-computation of term exp, and this is enforced by setting the predicate
pexp to true.
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Case 1:
Compute

...
u := exp;
...

...
pexp ? texp := exp;
pexp ? pexp := false;
u := texp;
...

Case 2:
Block

...
v := . . . ;
...

...
v := . . . ;
pexp := true;
...

(a) Original Code (b) Transformed Code

Figure 3: Basic Transformation

It is important to stress that, contrary to some other PRE approaches, our
transformation is strictly semantic preserving, i.e. we do not introduce new com-
putations on any path which were not present in the original code. If an evaluation
of an expression raises an exception, PPRE guarantees that the exception is raised
at exactly the same program point. However we add additional assignments which
have to be executed and may degrade a program’s performance. Hence, an analysis
of the effect on performance is inevitable.

Modern CPU architectures feature predicated execution, which facilitates condi-
tional execution of statements. The flags are implemented as hardware predicates.
Setting and resetting flags have very cheap costs and the re-computation of an
expression can be conditionally executed. For example, the Intel Itanium [15] pro-
vides 64 predicate registers, numbered p0 through p63, which contain either 0 or
1. Nearly all Itanium instructions can be prefixed with a predicate register. The
instruction is executed only if the predicate register holds 1; otherwise execution of
the instruction is skipped. For example, the instruction

(p2) add r3=r1,r2,1
will add the contents of registers r1 and r2 and the constant 1, storing the result
in r3, but only if the predicate register p2 contains 1. Unfortunately this instruc-
tion will use one CPU cycle whether it is executed or not and there would be no
benefit from our technique. However, if the expression to be evaluated references
memory or if the expression requires a call to a subroutine (for example, an integer
division on the Itanium requires 16 instructions and would be a plausible operation
to implement via a subroutine call), then use of predicated instructions would be
beneficial. If, for example, the partially redundant expression is a + b where a and
b are both floating-point values held in memory, then the Itanium code to evaluate
the expression and set the predicate flag (implemented as predicate register p7 here)
would be similar to the following:
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(p7) ldf.fill f8=a // load a
(p7) ldf.fill f9=b // load b
;;
(p7) fadd.s1 f10=f8,f9 // compute f10 = a+b

p7=0 // suppress reevaluation of a+b

Finally, at a point where the expression is invalidated by a store to either of the
memory locations a or b, the instruction

p7=1
should be inserted.

3.2. Cost Model

For each appearance of a term exp in the program we must decide whether it is
profitable to perform the transformation or not. A transformation for term exp at
some program point pays off if

OrigComp > PredicatedComp (1)

where OrigComp denotes the computational costs of exp in the original code and
PredicatedComp denotes the computational costs of exp in the transformed code.
Obviously, PredicatedComp is dominated by the number of times the value stored
in the temporary variable can be reused compared to the number of times the term
has to be recomputed. If p denotes the probability that the stored value of exp is
valid at some program point, then PredicatedComp is given by

PredicatedComp = p × Reuse + (1 − p) × Recompute (2)

with Reuse denoting the costs if mexp is set to false and the stored value can be
reused, and with Recompute denoting the costs associated with a re-computation.
By combining Equation (1) and (2) we obtain

p >
Recompute − OrigComp

Recompute − Reuse
(3)

Equation (3) specifies a lower bound for probability p. The execution times of
Recompute, OrigComp, and Reuse can be measured or predicted and the value of
p determined. Whenever pn > p holds at some program point n, it is profitable to
apply the transformation. Otherwise, if pn ≤ p, the performance of the program
may be degraded.

Let us consider again our motivating example with a program run π which
enters the loop and 2 times takes the left branch, 1 time the right branch, and
finally 6 times the left branch before terminating the loop. Let us further assume
that the execution times for term a/b are given as follows: Recompute = 110ns,
OrigComp = 100ns, and Reuse = 10ns. Thus we get:

p >
110ns − 100ns

110ns − 10ns
=

1
10

(4)

In our motivating example, the term a/b occurs in nodes 1 and 3. Since pn denotes
the probability that term a/b is valid at program point n, pn can be calculated
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easily by the ratio:

pn =
nr. of times a/b is available at n

nr. of times n occurs in π
(5)

Node 1 is executed once and term a/b is never available, thus we get p1 = 0/1 = 0.
Since p1 is not greater than p, a decision to perform the transformation is negative.
On the other hand, node 3 is executed 8 times and term a/b is available and reused
7 times which results in p3 = 7/8. Now p3 > p holds and the transformation should
therefore be performed for node 3.

Calculation of the probabilities pn is crucial to our cost model. An important
observation is that the definition of probability pn in Equation (5) is identical to
the definition of probabilistic partially available expressions.

3.3. Probabilistic Partially Available Expression Analysis

Classical data flow analysis determines whether a data flow fact may hold or
does not hold at some program point. Probabilistic data flow systems compute a
range, i.e. a probability, with which a dataflow fact will hold at some program point
[12,10]. In probabilistic dataflow systems, control flow graphs annotated with edge
probabilities are employed to compute the probabilities of dataflow facts. Usually,
edge probabilities are determined by means of profile runs based on representative
input data sets. These probabilities denote heavily and rarely executed branches
and are used to weight dataflow facts when propagating them through the control
flow graph.

An expression e is called partially available at a program point n, if there is
at least one path from the entry node to n containing a computation of e and
with no subsequent assignments to any variable used in e on that path. Such a
path contains an unnecessary re-computation of e which can be avoided by partial
redundancy elimination techniques.

Central to our cost model is the definition of pn. Combining probabilistic data
flow analysis with partial availability, we arrive at a suitable definition of pn: pn

represents the probability that an expression e is available at program point n. If n
is reached N times during a program’s execution, and e is available on A of those
N occasions, then pn is estimated as A/N .

Our probabilistic data flow framework [10] takes as input profiles with edge
probabilities of the control flow graphs and the dataflow equations for the dataflow
problem. The dataflow equations for partial availability are defined in the usual way,
and are shown in Figure 4. Profiling information is easily obtained with our modified
GNU gcc environment by specifying appropriate compiler options. Thus we can
obtain estimates for pn values with minimal programming effort and with little
extra compilation time (detailed experiments with SPEC95 have been published in
[10]).

4. Related Work

Traditional partial redundancy elimination techniques [8] cannot always remove
redundant expressions since static analysis approaches are too conservative. In [1]
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N-PAVAIL(n) =




false if n = start node
∨

m∈pred(n)

X-PAVAIL(m) otherwise

X-PAVAIL(n) = LocAvail(n) ∨ N-PAVAIL(n) ∧ LocBlock(n)

where

LocAvailexp(n) = Expression exp is available at the end of n.
LocBlockexp(n) = The expression exp is blocked by some instruction of n.

Figure 4: Partial Availability Analysis

it is reported that the number of dynamically eliminated expressions can be dou-
bled by employing more sophisticated approaches. However, although a simple
algorithm [14] can achieve a complete removal of all partial redundancies, the ap-
proach causes code growth which is exponential in the number of expressions and is
therefore not viable in practice. Speculative approaches [5,4] do not restructure the
control flow graph and insert additional computations into the control flow graph.
They achieve nearly the same optimization results as complete removal. However,
a major disadvantage of speculative PRE is that computations with side-effects
cannot be handled. In [1] a combination of speculative and code duplication is
given. To limit code growth and to select the appropriate PRE technique, profile
information is taken into account.

Our approach has the potential to remove all redundancies, though removal is
performed only when it would be profitable. Predicates indicate whether the com-
putation is available in temporaries or not. The approach is similar to memoization
techniques for functional languages. However, no lookups in a memoization table
are required since only the last computation of an expression is stored in a tem-
porary and a predicate controls whether the computation is valid or not. In [3], a
full implementation of memoization for assembly code is proposed. However, the
approach requires a hardware lookup mechanism and hardware buffers, which seems
to be costly for a stock CPU design.

With our approach, a probabilistic data flow analysis is required to determine
whether a transformation is profitable or not. Ramalingam [12] pioneered the field
of probabilistic data flow analysis which computes the probability of a dataflow
fact. The approach yields an approximate solution which can differ from the accu-
rate solution. In [10], that approach was improved by utilizing execution history for
estimating the probabilities of the dataflow facts. For calculating the deviations of
the probabilistic approaches from the accurate solution, the notion of an abstract
run [9] was developed. An abstract run accurately calculates the frequencies; how-
ever the computational complexity is proportional to the program path length and
is thus not feasible in practice. To compute an accurate solution in acceptable time,
a novel approach [13] based on whole program paths was developed.
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5. Summary

We have presented a partial redundancy elimination approach based on prob-
abilistic data flow analysis and predication. Our basic transformation achieves a
complete removal of all redundancies. However, since a complete removal of all par-
tial redundancies might not always be profitable, we introduced a cost analysis and
apply the transformation selectively. The cost analysis is based on probabilistic data
flow analysis (PDFA) and utilizes profile information. Moreover, refinements of the
basic transformation to improve the efficiency of the program have been presented.
Contrary to other approaches, the control flow graph is not restructured and the
optimization is strictly semantics preserving, i.e. computations with possible side
effects are handled correctly.
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