
Generating combinations by prefix shifts

Frank Ruskey∗ Aaron Williams†

Extended Abstract for COCOON 2005

Abstract

We present a new Gray code for combinations that is practical and elegant. We
represent combinations as bitstrings with s 0’s and t 1’s, and generate them with a
remarkably simple rule: Identify the shortest prefix ending in 010 or 011 (or the entire
bitstring if no such prefix exists) and then rotate (shift) it by one position to the right.
Since the rotated portion of the string consists of at most four contiguous runs of 0’s
and 1’s, each successive combination can be generated by transposing only one or two
pairs of bits. This leads to a very efficient loopless implementation. The Gray code also
has a simple and efficient ranking algorithm that closely resembles that of combinations
in colex order. For this reason, we have given a nickname to our order: cool-lex!

1 Background and motivation

An important class of computational tasks is the listing of fundamental combinatorial struc-
tures such as permutations, combinations, trees, and so on. Regarding combinations, Donald
E. Knuth [8] writes “Even the apparently lowly topic of combination generation turns out
to be surprisingly rich, I strongly believe in building up a firm foundation, so I have
discussed this topic much more thoroughly than I will be able to do with material that is
newer or less basic.”

The applications of combination generation are numerous and varied, and Gray codes for
them are particularly valuable. We mention as application areas cryptography (where they
have been implemented in hardware at NSA), genetic algorithms, software and hardware

∗Dept. of Computer Science, University of Victoria, research supported in part by NSERC. e-mail:
fruskey@cs.uvic.ca

†Dept. of Computer Science, University of Victoria, research supported in part by a NSERC PGS-D.
e-mail: haron@cs.uvic.ca

1

testing, statistical computation (e.g., for the bootstrap, Diaconis and Holmes [3]), and, of
course, exhaustive combinatorial searches.

As is common, combinations are represented as bitstrings of length n = s + t containing
s 0’s and t 1’s. We denote this set as B(s, t) = {b1b2 · · · bn |

∑
bi = t}. Another way of

representing combinations is as increasing sequences of the elements in the combination. We
denote this set as C(s, t) = {c1c2 · · · ct | 1 ≤ c1 < c2 < · · · < ct ≤ s + t}.
We consider here the problem of listing the elements of B(s, t) so that successive bitstrings
differ by a prefix that is cyclically shifted by one position to the right. We call such shifts pre-
fix shifts, or rotations, and they may be represented by a cyclic permutation σk = (1 2 · · · k)
for some 2 ≤ k ≤ n, where this permutation acts on the indices of a bitstring.

As far as we are aware, the only other class of strings that has a listing by prefix shifts
are permutations, say of {1, 2, . . . , n}. In Corbett [1] and Jiang and Ruskey [7] it is shown
that all permutations may be listed by prefix shifts. In other words, the directed Cayley
graph with generators (1 2), (1 2 3), (1 2 · · · n) is Hamiltonian. In our case we have the
same set of generators acting on the indices of the bitstring, but the underlying graph is not
vertex-transitive; in fact, it is not regular.

There are many algorithms for generating combinations. The one presented here has the
following novel characteristics.

1. Successive combinations differ by a prefix shift. There is no other algorithm for generat-
ing combinations with this feature. In some applications combinations are represented
in a single computer word; our algorithm is very fast in this scenario. It is also very
suitable for hardware implementation.

2. Successive combinations differ by one or two transpositions of a 0 and a 1. There are
other algorithms where successive combinations differ by a single transposition (Tang
and Liu [10]). Furthermore, that transposition can be further restricted in various ways.
For example, so that only 0’s are between the transposed bits (Eades and McKay) [5],
or such that that the transposed bits are adjacent or have only one bit between (Chase
[2]). Along with ours, these other variants are ably discussed in Knuth [8].

3. The list is circular; the first and last bitstrings differ by a prefix shift.

4. The list for (s, t) begins with the list for (s−1, t). Usually, this property is incompatible
with Property 3, relative to the elementary operation used to transform one string to
the next. For example, colex order has Property 4 but not Property 3.

5. The algorithm can be implemented so that in the worst case only a small number of
operations are done between successive combinations, independent of s and t. Such
algorithms are said to be loopless, an expression coined by Ehrlich [6].

2

110000 111100 111000 123 σ4

011000 011110 011100 234 σ2

101000 101110 101100 134 σ3

010100 110110 110100 124 σ5

001100 111010 011010 235 σ4

100100 011101 101010 135 σ4

010010 101101 010110 245 σ3

001010 110101 001110 345 σ3

000110 011011 100110 145 σ4

100010 101011 110010 125 σ6

010001 010111 011001 236 σ2

001001 001111 101001 136 σ4

000101 100111 010101 246 σ3

000011 110011 001101 346 σ3

100001 111001 100101 146 σ5

010011 256 σ3

001011 356 σ4

000111 456 σ4

100011 156 σ5

110001 126 σ6

Figure 1: Cool-lex listings W′
42, W′

24, W′
33.

6. Unlike other Gray codes for combinations, this one has a simple ranking function whose
running time is O(n) arithmetic operations.

2 Recursive Construction Rule

If S = s1, s2, . . . , sm is a sequence of strings and x is a symbol, then Sx represents the
sequence of strings Sx = s1x, s2x, . . . , smx. We recursively define the following list of bit-
strings.

Wst = W(s−1)t0, Ws(t−1)1, 1t−10s1 (1)

As will be proven below this list accounts for all strings in B(s, t) except for 1t0s. To get all
of B(s, t) we define

W′
st = 1t0s,Wst. (2)

Examples of W′ may be found in Figure 1 (the additional columns for W′
33 give the corre-

sponding element of C(3, 3) and the rotation σk used in transforming one bitstring to the
next).

3

Theorem 2.1. The list Wst defined in (1) has the following properties.

• The list contains each bitstring of B(s, t) exactly once, except for 1t0s.

• Successive bitstrings differ by a prefix shift of one position to the right.

• Successive bitstrings differ by the tranposition of one or two pairs of bits.

• first(Wst) = 01t0s−1.

• last(Wst) = 1t−10s1.

Proof. Our proof is by induction on n = s+t. The first property is satisfied since, inductively,
W(s−1)t0 is a list of all elements of B(s, t) that end in a 0, except for 1t0s−10, and Ws(t−1)1
is a list of all elements of B(s, t) that end in a 1, except for 1t−10t1, which is appended.

To prove the remaining properties it is convenient to separate out the cases t = 1 and s = 1.
The interfaces between sublists are indicated below as horizontal lines, and transposed bits
are underlined. The list below on the left is for t = 1 and on the right for s = 1.

010s−2 0 011t−2 1
...

...
0s−201 0 1t−201 1

00s−20 1 11t−20 1

Below we show the lists for the case where t > 1 and s > 1. The left and right lists are iden-
tical, except that the left list illustrates shifts, while the right list illustrates transpositions.
The starting and ending bitstring in each sublist is obtained from the induction assumption.

011t−210s−2 0 011t−210s−2 0
...

...
11t−200s−21 0 11t−200s−21 0
011t−200s−2 1 01t−210s−20 1

...
...

1t−200s−201 1 1t−2000s−21 1
11t−200s−20 1 1t−2100s−20 1

To verify the second and third properties we need to examine what happens at the interfaces
between the lists in (1) as illustrated above. Note that at the two interfaces the successive
bitstrings differ by a right rotation of all n positions (although at the second interface we
could also think of it as a rotation of the first n− 1 positions).

4

Note that two pairs of bits are transposed at the first interface, and one pair of bits at the
second interface. Thus the third property is satisfied. Finally, observe that the first and last
bitstrings in these lists have the required form.

To close this section, we make the interesting observation that last(Wst) = first(Wts)
R
;

such equations would allow us to define cool-lex order in other ways.

3 Implementation

Referring back to the proof of Theorem 2.1, we observe that the bits that are transposed
at the first interface are (1, t) and (n − 1, n), and at the second interface (t − 1, n − 1).
Below we show a recursive implementation of the algorithm; this is followed by an iterative
implementation. In both cases, the code that initializes b to 1t0s and outputs it is omitted;
we also assume that s > 0 and t > 0.

For the recursive version, the array b has indexing starting at 1. The initial call is swap(1,

t+1); visit(b); gen(s, t);. Since every recursive call is followed by a visit, the
algorithm runs in constant amortized time.

static void gen (int s, int t) {

if (s > 1) { gen(s-1, t);

swap(1, t); swap(s+t, s+t-1); visit(b); }

if (t > 1) { gen(s, t-1);

swap(t-1, s+t-1); visit(b); }

}

We now present the iterative loopless implementation. In this case the array indexing is 0
based. It is useful to maintain a variable x, which is the smallest index for which b[x-1]

== 0 and b[x] == 1. In terms of shifts, the code to get the next bitstring and to update x

is amazingly simple.

shift(++x);

if (b[0] == 0 && b[1] == 1) x = 1;

To generate the next bitstring by transpositions it is useful to maintain another variable y,
which is the smallest index for which b[y] == 0. Referring back to the proof of Theorem
2.1 we observe that in every case b[x] becomes 0 and b[y] becomes 1. The test b[x+1]

== 0 determines whether we are at the first or the second interface. If we are at the first
interface, then we set b[x+1] to 1 and b[0] to 0. It now remains to update x and y. At
the second interface they are simply incremented. At the first interface y always becomes

5

0; also, x is incremented unless y = 0, in which case x becomes 1 (see the t = 1 case of the
proof of Theorem 2.1).

static void iterate (int s, int t) {

b[t] = 1; b[0] = 0;

visit(b);

int x = 1, y = 0;

while (x < n-1) {

b[x++] = 0; b[y++] = 1; /* X(s,t) */

if (b[x] == 0) {

b[x] = 1; b[0] = 0; /* Y(s,t) */

if (y > 1) x = 1; /* Z(s,t) */

y = 0; }

visit(b); } }

The structure of the implementation allows us to completely determine the number of times
each statement in the code is executed. Call the relevant quantities X(s, t), Y (s, t), and
Z(s, t) corresponding to the various statements as shown above. I.e., Y (s, t) is the number
of times b[x] == 0 is true and X(s, t) is the number of times y > 1 is true. We find that

X(s, t) =

(
s + t

t

)
− 1, Y (s, t) =

(
s + t− 1

t

)
, Z(s, t) =

(
s + t− 2

t− 1

)
.

4 Ranking Algorithm

Given a listing of combinatorial structures, the rank of a particular structure is the number
of structures that precede it in the listing.

Colex order is lexicographic order applied to the reversal of strings. It has many uses, for
example in Frankl’s now standard proof of the Kruskal-Katona Theorem [11]. Given an
(s, t)-combination represented as a bitstring b1b2 · · · bn the corresponding set elements can
be listed as c1 < c2 < · · · < ct where ci is the position of the i-th 1 in the bitstring. As is
well-known ([8],[11]) in colex order the rank of c1c2 · · · ct is

t∑
j=1

(
ci − 1

i

)
. (3)

As we see in the statement of the theorem below, in cool-lex order there is a very similar
rank function. Let rank(c1c2 · · · ct) denote the rank of c1c2 · · · ct ∈ C(s, t) in our order.

Theorem 4.1. Let r be the smallest index such that cr > r (so that cr−1 = r − 1).

rank(c1c2 · · · ct) =

(
cr

r

)
− 1 +

t∑
j=r+1

((
cj − 1

j

)
− 1

)
, (4)

6

Proof. Directly from the recursive construction (1) we have

rank(b1b2 · · · bn) =

rank(b1b2 · · · bn−1) if bn = 0,(
s+t
t

)− 1 if b1b2 · · · bn = 1t−10s1,(
s+t−1
t−1

)− 1 + rank(b1b2 · · · bn−1) otherwise.

Let us now consider the rank in terms of the corresponding list of elements 1 ≤ c1 < c2 <
· · · < ct. The case rank(b1b2 · · · bn) = rank(b1b2 · · · bn−1) = rank(b1b2 · · · bn−2) will continue
to apply until bn−k = 1; i.e., until n− k = ct−1. Hence the number of 0’s and 1’s to the left
of position ct−1 in b1b2 · · · bn is ct−1 − 1, which leads us to the expression below.

rank(c1c2 · · · ct) =

{(
ct

t

)− 1 if ct = n and ct−1 = t− 1(
ct−1−1

t−1

)− 1 + rank(c1c2 · · · ct−1) otherwise.

As in (3) and (4), the recursion above has the remarkable and useful property that it depends
only on t and not on s. In other words, the cool-lex lists begin with cool-lex lists with smaller
s values (fewer zeroes).

The ranking function can also be written recursively, as shown below.

rank(c1ct · · · ct) = rank(c1c2 · · · ct−1) +

(
cr − 1

r − 1

)
+ r − t− 1. (5)

Using standard techniques, as explained for example in [8] the expression in (4) can be
evaluated in O(n) arithmetic operations.

5 Final Remarks

Unlike every other recursive Gray code definition, (1) has the remark-
able property that it involves no reversal of lists. The list for C(6, 3) has
been rendered musically by George Tzanetakis and is available on the page
http://www.cs.uvic.ca/~ruskey/Publications/Coollex/Coollex.html

The algorithm discussed here appears in Knuth’s prefasicle [8] (latest version of January 19,
2005). The output of the algorithm is illustrated in Figure 26 on page 16. He refers to the
listing as suffix-rotated (since he indexes the bitstrings bn−1 · · · b1b0). See also Exercise 55
on page 30 and it’s solution on page 46.

To conclude the paper we list some open problems:

• Is it possible to generate combinations if the allowed operations are futher restricted?
For example, all permutations can be generated by letting the permutations (1 2) and
(1 2 · · · n) and their inverses act on the indices. Can all combinations be so generated?

7

• Can the permutations of a multiset be generated by suffix rotations?

• What is the fastest combination generator when carefully implemented? It would be
interesting to undertake a comparative evaluation in a controlled environment, say of
carefully implemented MMIX programs. Testing should be done, in the three cases,
depending on whether the combination is represented by a single computer word, an
element of B(s, t), or an element of C(s, t).

References

[1] P.F. Corbett, Rotator Graphs: An Efficient Topology for Point-to-Point Multiprocessor
Networks, IEEE Transactions on Parallel and Distributed Systems, 3 (1992) 622–626

[2] P.J. Chase, Combination Generation and Graylex Ordering, Congressus Numerantium,
69 (1989) 215-242.

[3] P. Diaconis and S. Holmes, Gray codes for randomization procedures Statistical Com-
puting, 4 (1994) 207–302.

[4] P. Eades, M. Hickey and R. Read, Some Hamilton Paths and a Minimal Change Algo-
rithm, Journal of the ACM, 31 (1984) 19-29.

[5] P. Eades and B. McKay, An Algorithm for Generating Subsets of Fixed Size with a
Strong Minimal Change Property, Information Processing Letters, 19 (1984) 131-133.

[6] G. Ehrlich, Loopless Algorithms for Generating Permutations, Combinations and Other
Combinatorial Configurations, Journal of the ACM, 20 (1973) 500-513.

[7] M. Jiang and F. Ruskey, Determining the Hamilton-connectedness of certain vertex-
transitive graphs, Discrete Mathematics, 133 (1994) 159-170.

[8] Donald E. Knuth, The Art of Computer Programming, pre-fascicle 4A (a draft of Section
7.2.1.3: Generating all Combinations), Addison-Wesley, 2004, 61 pages (available online
at http://www-cs-faculty.stanford.edu/~knuth/fasc3a.ps.gz).

[9] F. Ruskey, Simple combinatorial Gray codes constructed by reversing sublists, 4th ISAAC
(International Symposium on Algorithms and Computation), Lecture Notes in Com-
puter Science, #762 (1993) 201–208.

[10] D.T. Tang and C.N. Liu Distance-2 Cycle Chaining of Constant Weight Codes, IEEE
Transactions, C-22 (1973) 176–180.

[11] D. Stanton and D. White, Constructive Combinatorics, Springer-Verlag, 1986.

8

