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Venn diagram examples; famous and otherwise (n = 1).

n = number of curves = 1



Venn diagram examples; famous and otherwise (n = 2).

From the “NewStatesman.com” July 2012.
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Venn diagram examples; famous and otherwise (n = 3, 4).
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An irreducible Venn diagram (n = 5)



What is a Venn diagram?

I Made from simple closed curves
C1,C2, . . . ,Cn.

I Only finitely many intersections.

I Each such intersection is
transverse (no “kissing”).

I Let Xi denote the interior or the
exterior of the curve Ci and
consider the 2n intersections
X1 ∩ X2 ∩ · · · ∩ Xn.

I Euler diagram if each such
intersection is connected.

I Venn diagram if Euler and no
intersection is empty.

I Independent family if no
intersection is empty.
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Winkler’s conjecture

I An n-Venn diagram is reducible if there is some curve whose
removal leaves an (n − 1)-Venn diagram.

I An n-Venn diagram is extendible if the addition of some curve
results in an (n + 1)-Venn diagram.

I Not every Venn diagram is reducible. Every reducible diagram
is extendible.

I Conjecture: Every simple n-Venn diagram is extendible to a
simple (n + 1)-Venn diagram.

I Reference: Peter Winkler, Venn diagrams: Some observations
and an open problem, Congressus Numerantium, 45 (1984)
267–274.

I The conjecture is true if the simplicity condition is removed
(Chilakamarri, Hamburger, and Pippert (1996)).

I The conjecture is true if n ≤ 5. Determined by Bultena; there
are 20 non-isomorphic (spherical) diagrams to check.
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Winkler’s conjecture



Wishes and Reality

I What we want to prove: The dual of every simple Venn
diagram is Hamiltonian.

I What we can prove: Every simple Venn diagram is
Hamiltonian. Here intersection points are vertices and curve
segments between vertices are edges.

I Is it progress? Good question. Remains to be seen.



Our result Winkler conjecture



Proof Strategy

I Previously, it was know that any simple Venn graph is
3-connected (Kiran B. Chilakamarri, Peter Hamburger and
Raymond E. Pippert, Analysis of Venn diagrams using cycles
in graphs, Geometriae Dedicata, 82 (2000) 193–223).

I But if we can show that the graph is 4-connected then Tutte’s
theorem applies.

Theorem (Tutte, 1956): Every 4-connected planar
graph is hamiltonian.

I

I Alternate characterization of k-connectivity: Theorem
(Menger): A graph is k-connected if and only if between
every pair of distinct vertices there are at least k pairwise
vertex-disjoint paths.



A useful (new?)1 lemma

Lemma: A connected graph is k-connected if and only if for every
pair of vertices u,v at distance 2 there are at least k vertex disjoint
paths between v and v .
Proof: ⇒ is immediate.

I Minimum cutset X
and vertex x ∈ X .

I Graph G − X + x is
connected, x has
neighbors u, v on
each side.

I k disjoint paths from
u to v , each hits at
least one vertex in X .

I Thus |X | ≥ k ; i.e.,
the minimum cutset
size is at least k.

1
At CanaDAM Mark Ellingham informs us that this lemma is an exercise in the new version of Bondy and Murty.
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The proof of 4-connectivity

I We only use two properties of Venn diagrams (n > 2):

I There are no 2-faces.

? ?

I No face has 2 (or more) instances of the same curve.
?

?

I The second condition implies the first.

I Let 2 and 2 be any two vertices at distance 2. There are 2
cases.

I The two edges on the path are from the same (green) curve.

I The two edges on the path are from different curves (red &
green).



Case 1: 2, 2 are on the same curve

Case 1:Both of 2 and 2 are on the same (green) curve.



Case 1: 2, 2 are on the same curve

Path 1: Use the length 2 green path.



Case 1: 2, 2 are on the same curve

Path 2: Use the edges on two adjacent faces.



Case 1: 2, 2 are on the same curve

Path 3: Use the edges on the other two adjacent faces.



Case 1: 2, 2 are on the same curve

Path 4: Use the unused green edges.



Case 1: 2, 2 are on the same curve

All four paths shown at once.



Case 1: 2, 2 are on the different curves

Case 1: Vertices 2 and 2 are on different curves.



Case 1: 2, 2 are on the different curves

Path 1: Use the length 2 path between 2 and 2.



Case 1: 2, 2 are on the different curves

Path 2: Use the edges on the common face.



Case 1: 2, 2 are on the different curves

Path 3: Use the edges on the other three faces.



Case 1: 2, 2 are on the different curves

Path 4: Use green path to last red intersection, then red edges.



Case 1: 2, 2 are on the different curves

All four paths shown at once.



What about non-simple Venn diagrams?

They are only 2-connected in general:

Examples of a general family on prime numbers of curves.



Tutte’s Theorem for Winkler’s conjecture?

Problem: Venn diagram duals are only 3-connected in general,
because Venn diagrams have 3-faces. In fact

Theorem
For n ≥ 3, any n-Venn diagram has at least 8 3-faces.



A 3-connected non-Hamilton collection of curves

Iwamoto & Touissant (1994) Finding Hamiltonian circuits in
arrangements of Jordan curves is NP-complete.



Open problems

I Is every non-simple Venn graph Hamiltonian?

I What is the internal connectivity of a Venn dual? (KY)

Easier versions of Winkler’s conjecture:

I Does every Venn diagram dual have a perfect matching?

I Is every monotone Venn diagram extendible? Monotone =
drawable with all curves convex.

I Is the prism (G × e) of every Venn diagram dual hamiltonian?



The End

Thanks for coming.
Any questions?



Theorem: Every Venn diagram is extendible.
Proof: Form radual graph. Apply Whitney’s theorem.


