Every Simple Venn Diagram is Hamiltonian

Frank Ruskey ${ }^{1} \quad$ Gara Pruesse ${ }^{2}$

${ }^{1}$ Department of Computer Science, University of Victoria, CANADA.
${ }^{2}$ Department of Computer Science, Vancouver Island University, CANADA.

CanaDAM 2015, Saskatoon

Venn diagram examples; famous and otherwise $(n=1)$.

Sunday February 15, 2015

DILBERT

BY SCOTT ADAMS
YOU SAID IT IN FRONT OF A DOZEN REPORTERS AT A BUSINESS EVENT.

$$
n=\text { number of curves }=1
$$

Venn diagram examples; famous and otherwise $(n=2)$.

Mitt Romney doesn't understand Venn diagrams

The Romney campaign have been making "venn diagrams". Oh dear.

From the "NewStatesman.com" July 2012.

Venn diagram examples; famous and otherwise $(n=2)$.

Mitt Romney doesn't understand Venn diagrams

The Romney campaign have been making "venn diagrams". Oh dear.

From the "NewStatesman.com" July 2012.

Venn diagram examples; famous and otherwise $(n=2)$.

Mitt Romney doesn't understand Venn diagrams

The Romney campaign have been making "venn diagrams". Oh dear.
A Venn Diagram, you see, is designed to show all possible logical relationships between a finite collection of sets. Put more simply, you label the left circle with one factor, the right circle with another, and the center with something that has properties of both. For example, this is a Venn Diragram:

From the "Upworthy.com".

Venn diagram examples; famous and otherwise $(n=2)$.

Mitt Romney doesn't understand Venn diagrams

The Romney campaign have been making "venn diagrams". Oh dear.
A Venn Diagram, you see, is designed to show all possible logical relationships between a finite collection of sets. Put more simply, you label the left circle with one factor, the right circle with another, and the center with something that has properties of both. For example, this is a Venn Diragram:

From the "Upworthy.com".

Venn diagram examples; famous and otherwise ($n=3,4$).
B.E $=$ Bitinh $c+\bar{f}$
$U E=$ Unitid Curpe

Dramen by th Chunchill à thew castle a k $5^{*} \sqrt{\text { uns }} 14 t^{8} \div$ illastínti Syland paition i Th. wald-to -G2 "If we ARE wortay".

Venn diagram examples; famous and otherwise ($n=3,4$).
B.E $=$ Bitinh $c+\bar{f}$
$U E=$ Unitid Curpe

Dramen by th Chunchill à thesor castle a k $5^{*} 乌$ uns $1548=$ illaotinati Emlando paition it Th. wald-to -G2 "If we ARE wortay".

Venn diagram examples; famous and otherwise ($n=3,4$).

An irreducible Venn diagram $(n=5)$

What is a Venn diagram?

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Only finitely many intersections.
- Each such intersection is
transverse (no "kissing").
- Let X_{i} denote the interior or the exterior of the curve C_{i} and consider the 2^{n} intersections

What is a Venn diagram?

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Only finitely many intersections.
- Each such intersection is transverse (no "kissing").
- Let X_{i} denote the interior or the exterior of the curve C_{i} and consider the 2^{n} intersections $X_{1} \cap X_{2} \cap \cdots \cap X_{n}$. Euler diagram if each such intersection is connected.

What is a Venn diagram?

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Only finitely many intersections.
- Each such intersection is transverse (no "kissing").
- Let X_{i} denote the interior or the exterior of the curve C_{i} and consider the 2^{n} intersections $X_{1} \cap X_{2} \cap \cdots \cap X_{n}$.
- Euler diagram if each such intersection is connected.

What is a Venn diagram?

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Only finitely many intersections.
- Each such intersection is transverse (no "kissing").
- Let X_{i} denote the interior or the exterior of the curve C_{i} and consider the 2^{n} intersections $X_{1} \cap X_{2} \cap \cdots \cap X_{n}$.
- Euler diagram if each such intersection is connected.

Euler but not Venn

What is a Venn diagram?

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Only finitely many intersections.
- Each such intersection is transverse (no "kissing").
- Let X_{i} denote the interior or the exterior of the curve C_{i} and consider the 2^{n} intersections $X_{1} \cap X_{2} \cap \cdots \cap X_{n}$.
- Euler diagram if each such intersection is connected.
- Venn diagram if Euler and no intersection is empty.

Venn (and Euler)

What is a Venn diagram?

- Made from simple closed curves $C_{1}, C_{2}, \ldots, C_{n}$.
- Only finitely many intersections.
- Each such intersection is transverse (no "kissing").
- Let X_{i} denote the interior or the exterior of the curve C_{i} and consider the 2^{n} intersections $X_{1} \cap X_{2} \cap \cdots \cap X_{n}$.
- Euler diagram if each such intersection is connected.
- Venn diagram if Euler and no intersection is empty.
- Independent family if no intersection is empty.

Winkler's conjecture

- An n-Venn diagram is reducible if there is some curve whose removal leaves an ($n-1$)-Venn diagram.
- An n-Venn diagram is extendible if the addition of some curve results in an ($n+1$)-Venn diagram.
- Not every Venn diagram is reducible. Every reducible diagram is extendible.
- Conjecture: Every simple n-Venn diagram is extendible to a simple $(n+1)$-Venn diagram
- Reference: Peter Winkler, Venn diagrams: Some observations and an open problem, Congressus Numerantium, 45 (1984) 267-274
- The conjecture is true if the simplicity condition is removed (Chilakamarri, Hamburger, and Pippert (1996)).
- The conjecture is true if $n \leq 5$. Determined by Bultena; there are 20 non-isomorphic (spherical) diagrams to check.

Winkler's conjecture

- An n-Venn diagram is reducible if there is some curve whose removal leaves an ($n-1$)-Venn diagram.
- An n-Venn diagram is extendible if the addition of some curve results in an ($n+1$)-Venn diagram.
- Not every Venn diagram is reducible. Every reducible diagram is extendible.
- Conjecture: Every simple n-Venn diagram is extendible to a simple $(n+1)$-Venn diagram.
- Reference: Peter Winkler, Venn diagrams: Some observations and an open problem, Congressus Numerantium, 45 (1984) 267-274.
- The conjecture is true if the simplicity condition is removed (Chilakamarri, Hamburger, and Pippert (1996)).
- The conjecture is true if $n \leq 5$. Determined by Bultena; there are 20 non-isomorphic (spherical) diagrams to check.

Winkler's conjecture

```
to be very" Hamiltonian. All Venn diagrams are well known
``` author have proved to be extendible, bus studied by the above) the edge-proportion drops examples for large \(n\). So, the question is:

Is every \(n-V e n n\) diagram extendible to
\[
\text { an }(n+1)-\text { Venn diagram? }
\]

\section*{Puzzled \\ Where Sets Meet (Venn Diagrams)}

Welcome to three new puzzles.
Solutions to the first two will be published next month; the third is as yet unsolved.

3.Prove or disprove that to any Venn diagram of order \(n\) another curve can be added, making it a Venn diagram of order \(n+1\); remember, only simple crossings allowed.

\section*{Wishes and Reality}

The Venn Diagram, \(C\)

The Venn Diagram \(V(C)\) as an edge abelled Graph.

The Venn Dual, a 3-cube, \(\mathrm{D}(\mathrm{C})\)
The cyan vertices are identified.
- What we want to prove: The dual of every simple Venn diagram is Hamiltonian.
- What we can prove: Every simple Venn diagram is Hamiltonian. Here intersection points are vertices and curve segments between vertices are edges.
- Is it progress? Good question. Remains to be seen.

Our result

Winkler conjecture

\section*{Proof Strategy}
- Previously, it was know that any simple Venn graph is 3-connected (Kiran B. Chilakamarri, Peter Hamburger and Raymond E. Pippert, Analysis of Venn diagrams using cycles in graphs, Geometriae Dedicata, 82 (2000) 193-223).
- But if we can show that the graph is 4-connected then Tutte's theorem applies.
Theorem (Tutte, 1956): Every 4-connected planar graph is hamiltonian.

- Alternate characterization of \(k\)-connectivity: Theorem (Menger): A graph is \(k\)-connected if and only if between every pair of distinct vertices there are at least \(k\) pairwise vertex-disjoint paths.

\section*{A useful (new?) \({ }^{1}\) lemma}

Lemma: A connected graph is \(k\)-connected if and only if for every pair of vertices \(u, v\) at distance 2 there are at least \(k\) vertex disjoint paths between \(v\) and \(v\).
Proof: \(\Rightarrow\) is immediate.

\section*{A useful (new?) \({ }^{1}\) lemma}

Lemma: A connected graph is \(k\)-connected if and only if for every pair of vertices \(u, v\) at distance 2 there are at least \(k\) vertex disjoint paths between \(v\) and \(v\).
Proof: \(\Leftarrow\) :

\footnotetext{
\({ }^{1}\) At CanaDAM Mark Ellingham informs us that this lemma is an exercise in the new̄ version of Bondy and Murty. a ©
}

\section*{A useful (new?) \({ }^{1}\) lemma}

Lemma: A connected graph is \(k\)-connected if and only if for every pair of vertices \(u, v\) at distance 2 there are at least \(k\) vertex disjoint paths between \(v\) and \(v\).
Proof: \(\Leftarrow\) :

\footnotetext{
\({ }^{1}\) At CanaDAM Mark Ellingham informs us that this lemma is an exercise in the new version of Bondy and Murty.
}

\section*{A useful (new?) \({ }^{1}\) lemma}

Lemma: A connected graph is \(k\)-connected if and only if for every pair of vertices \(u, v\) at distance 2 there are at least \(k\) vertex disjoint paths between \(v\) and \(v\).
Proof: \(\Leftarrow\) :

- Minimum cutset \(X\) and vertex \(x \in X\).
- Graph \(G-X+x\) is connected, \(x\) has neighbors \(u, v\) on each side.
k disjoint paths from \(u\) to \(v\), each hits at least one vertex in \(X\) the minimum cutset

\section*{A useful (new?) \({ }^{1}\) lemma}

Lemma: A connected graph is \(k\)-connected if and only if for every pair of vertices \(u, v\) at distance 2 there are at least \(k\) vertex disjoint paths between \(v\) and \(v\).
Proof: \(\Leftarrow\) :

- Minimum cutset \(X\) and vertex \(x \in X\).
- Graph \(G-X+x\) is connected, \(x\) has neighbors \(u, v\) on each side.
- \(k\) disjoint paths from \(u\) to \(v\), each hits at least one vertex in \(X\).
the minimum cutset

\footnotetext{
\({ }^{1}\) At CanaDAM Mark Ellingham informs us that this lemma is an exercise in the new version of Bondy and Murty:
}

\section*{A useful (new?) \({ }^{1}\) lemma}

Lemma: A connected graph is \(k\)-connected if and only if for every pair of vertices \(u, v\) at distance 2 there are at least \(k\) vertex disjoint paths between \(v\) and \(v\).
Proof: \(\Leftarrow\) :

- Minimum cutset \(X\) and vertex \(x \in X\).
- Graph \(G-X+x\) is connected, \(x\) has neighbors \(u, v\) on each side.
- \(k\) disjoint paths from \(u\) to \(v\), each hits at least one vertex in \(X\).
- Thus \(|X| \geq k\); i.e., the minimum cutset size is at least \(k\).

\footnotetext{
\({ }^{1}\) At CanaDAM Mark Ellingham informs us that this lemma is an exercise in the new version of Bondy and Murty:
}

\section*{The proof of 4-connectivity}
- We only use two properties of Venn diagrams (\(n>2\)):
- There are no 2-faces.
- No face has 2 (or more) instances of the same curve.

- The second condition implies the first.
- Let \(\square\) and \(\square\) be any two vertices at distance 2. There are 2 cases.
- The two edges on the path are from the same (green) curve.
- The two edges on the path are from different curves (red \& green).

\section*{Case 1: \(\square, \square\) are on the same curve}

Case 1:Both of \(\square\) and \(\square\) are on the same (green) curve.

\section*{Case 1: \(\square, \square\) are on the same curve}

Path 1: Use the length 2 green path.

\section*{Case 1: \(\square, \square\) are on the same curve}

Path 2: Use the edges on two adjacent faces.

\section*{Case 1: \(\square, \square\) are on the same curve}

Path 3: Use the edges on the other two adjacent faces.

\section*{Case 1: \(\square, \square\) are on the same curve}

Path 4: Use the unused green edges.

\section*{Case 1: \(\square, \square\) are on the same curve}

All four paths shown at once.

\section*{Case 1: \(\square, \square\) are on the different curves}

Case 1: Vertices \(\square\) and \(\square\) are on different curves.

\section*{Case 1: \(\square, \square\) are on the different curves}

Path 1: Use the length 2 path between \(\square\) and \(\square\).

\section*{Case 1: \(\square, \square\) are on the different curves}

Path 2: Use the edges on the common face.

\section*{Case 1: \(\square, \square\) are on the different curves}

Path 3: Use the edges on the other three faces.

\section*{Case 1: \(\square, \square\) are on the different curves}

Path 4: Use green path to last red intersection, then red edges.

\section*{Case 1: \(\square, \square\) are on the different curves}

All four paths shown at once.

What about non-simple Venn diagrams?
They are only 2-connected in general:

Examples of a general family on prime numbers of curves.

\section*{Tutte's Theorem for Winkler's conjecture?}

Problem: Venn diagram duals are only 3-connected in general, because Venn diagrams have 3-faces. In fact

Theorem
For \(n \geq 3\), any \(n\)-Venn diagram has at least 8 3-faces.

\section*{A 3-connected non-Hamilton collection of curves}

Iwamoto \& Touissant (1994) Finding Hamiltonian circuits in arrangements of Jordan curves is NP-complete.

\section*{Open problems}
- Is every non-simple Venn graph Hamiltonian?
- What is the internal connectivity of a Venn dual? (KY)

Easier versions of Winkler's conjecture:
- Does every Venn diagram dual have a perfect matching?
- Is every monotone Venn diagram extendible? Monotone = drawable with all curves convex.
- Is the prism \((G \times e)\) of every Venn diagram dual hamiltonian?

\section*{The End}

Thanks for coming. Any questions?

Theorem: Every Venn diagram is extendible. Proof: Form radual graph. Apply Whitney's theorem.
```

