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Abstract

In this paper we are concerned with producing exhaustive lists of simple
monotone Venn diagrams that have some symmetry (non-trivial isometry)
when drawn on the sphere. A diagram is simple if at most two curves intersect
at any point, and it is monotone if it has some embedding on the plane
in which all curves are convex. We show that there are 23 such 7-Venn
diagrams with a 7-fold rotational symmetry about the polar axis, and that 6
of these have an additional 2-fold rotational symmetry about an equatorial
axis. In the case of simple monotone 6-Venn diagrams, we show that there
are 39020 non-isomorphic planar diagrams in total, and that 375 of them
have a 2-fold symmetry by rotation about an equatorial axis, and amongst
these we determine all those that have a richer isometry group on the sphere.
Additionally, 270 of the 6-Venn diagrams also have the 2-fold symmetry
induced by reflection about the center of the sphere.

Since such exhaustive searches are prone to error, we have implemented
the search in a couple of ways, and with independent programs. These dis-
tinct algorithms are described. We also prove that the Grünbaum encoding
can be used to efficiently identify any monotone Venn diagram.

Keywords: Spherical Venn diagram, symmetry, exhaustive enumeration,
Grünbaum encoding.

1. Introduction

Named after John Venn (1834 − 1923), who used diagrams of overlap-
ping circles to represent propositions, Venn diagrams are commonly used in
set theory to visualize the relationships between different sets. The familiar
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three circle Venn diagram is usually drawn with a three-fold rotational sym-
metry (Figure1(a)) and the question naturally arises as to whether there are
other Venn diagrams with rotational and other symmetries. Some research
has been done recently on generating and drawing Venn diagrams of more
than three sets, particularly in regard to symmetric Venn diagrams, which
are those where rotating the diagram by 360/n degrees results in the same
diagram up to a relabelling of the curves. Grünbaum [10] discovered a ro-
tationally symmetric 5-Venn diagram (Figure 1(b)). Henderson [12] proved
that if an n-curve Venn diagram has an n-fold rotational symmetry then n
must be prime. Recently, Wagon and Webb [17] clarified some details of
Henderson’s argument. The necessary condition that n be prime was shown
to be sufficient by Griggs, Killian and Savage [9] and an overview of these
results was given by Ruskey, Savage, and Wagon [14].

A Venn diagram is simple if at most two curves intersect at any point.
In this paper we only consider simple Venn diagrams. There is one simple
symmetric 3-Venn diagram and one simple symmetric 5-Venn diagram. Ed-
wards wrote a program to exhaustively search for simple polar symmetric
7-Venn diagrams and he discovered 5 of them, but somehow overlooked a
6-th [7]. His search was in fact restricted to monotone Venn diagrams, which
are equivalent to those that can be drawn with convex curves [2]. Figure
1(c) is a 7-set Venn diagram with 7-fold rotational symmetry, called “Ade-
laide” by Edwards, and which was discovered independently by Grünbaum
[11] and Edwards [7]. It should be noted that the diagrams constructed in [9]
are inherently non-simple, and the existence question for simple symmetric
11-Venn diagrams remains an open problem.

It is known that Venn diagrams exist for any number of curves and several
constructions of them are known [15], but the total number of simple Venn
diagrams is known only up to n = 5. In this paper, we determine that the
number of simple monotone 6-Venn diagrams is 39020; undoubtedly there
are many other non-monotone diagrams.

Symmetric spherical Venn diagrams were first systematically investigated
by Weston [18] and the recent paper [16] shows that Venn diagrams exhibit-
ing each of the possible order 2 isometries exist for all n. The underlying
constructions of [16] are inherently non-simple and the diagrams presented
in the current paper are the first known simple Venn diagrams with certain
order 2 isometries for 6-Venn diagrams.

A program was written to search for monotone simple symmetric 7-Venn
diagrams and 23 of them were reported in the original version of the “Survey
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Figure 1: (a) A 3-Venn diagram whose curves are circles. (b) A 5-Venn diagram whose
curves are ellipses. (c) A symmetric 7-Venn known as “Adelaide.”

of Venn Diagrams” (Ruskey and Weston [15]) from 1997, but no description
of the method was ever published and the isomorphism check was unjustified.
Later Cao [3] checked those numbers, and provided a proof of the isomor-
phism check, but again no journal paper with the result was ever published.
In this paper, we justify that isomorphism check with a new simpler proof
and yet again recompute and verify the number of symmetric simple 7-Venn
diagrams.

In this paper we are restricting our attention to the special (and most
studied) class of Venn diagrams; diagrams that are both simple and monotone
(drawable with convex curves). Our eventual aim is to provide a complete
enumeration of such diagrams for small values of n, determining also the dia-
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grams which have non-trivial isometries when embedded on the sphere. The
underlying techniques rely on exhaustive backtrack searches with intelligent
pruning rules whose use is justified by structural theorems. Such computer
searches are prone to error and so we have made considerable effort to ensure
that our computations are correct by using different representations, different
methods for checking isomorphism, and independent programming efforts.

Our main concern in this paper are Venn diagrams with n curves, where
n = 6 and n = 7. The case of n = 7 is done first, but only on those diagrams
that have an order 7 rotational symmetry, because of the overwhelming num-
ber of possibilities otherwise. Two different representations are used, with
three independent programs. We find that there are 23 non-isomorphic ro-
tationally symmetric simple monotone 7-Venn diagrams. Of these 23, there
are 6 that have an additional 2-fold “polar symmetry” (Figure 10), and 17
that do not (Figure 11).

In the case of n = 6 we again used 2 different representations and three
independent programs. There are 39020 non-isomorphic simple monotone
6-Venn diagrams. Of these, 375 have polar symmetry, of those 27 have an
isometry group order of 4, and 6 have an isometry group order of 8 (Figure
12). Additionally, 270 of the 6-Venn diagrams also have the 2-fold symmetry
induced by reflection about the center of the sphere.

We introduce several different representations of these diagrams. Al-
though these representations are somewhat similar in nature and there are
efficient algorithms for getting from one representation to the other, we used
them to implement independent generating algorithms for each class of stud-
ied Venn diagrams.

The remainder of this paper is organized as follows. In Section 2 we
introduce the terminology and basic definitions. In Section 3 we explain
various representations of Venn diagrams. The generating algorithms and
results are described in Section 4.

Some of the results of this paper were first published in the conference
proceedings [13] and [4]. In this paper we have combined, extended, and
refined those results.

2. Definitions

Let C = {C0, C1, . . . , Cn−1} be a collection of n finitely intersecting simple
closed curves in the plane. We call C an independent family if each of 2n sets

X0 ∩ X1 ∩ · · · ∩ Xn−1
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is nonempty, whereXi is either the unbounded open exterior or open bounded
interior of curve Ci. If each set is a nonempty and connected region, then C
is called an n-Venn diagram. A simple Venn diagram is one in which exactly
two curves cross each other at each intersection point.

A k-region in a Venn diagram is a region that is in the interior of precisely
k curves. In an n-Venn diagram, each k-region corresponds to a k-element
subset of a set with n elements. Thus, there are

(
n
k

)
distinct k-regions. A

Venn diagram is monotone if every k-region is adjacent to both some (k−1)-
region (if k > 0) and also to some (k + 1)-region (if k < n). The rank of
a region of a Venn diagram is defined to be

∑n−1
i=0 2ixi, where xi = 1 if it is

in the interior of curve i and xi = 0 otherwise. By the definition of a Venn
diagram, each region has a unique rank r in the range 0 ≤ r < 2n.

An n-Venn diagram is rotationally symmetric, if rotation of the diagram
by an angle of 2π/n about a fixed point in the plane does not change the
diagram, except for a relabeling of the curves. Therefore, a 1/nth circular
sector of a rotationally symmetric n-Venn diagram is enough to generate the
whole diagram.

Polar symmetry is another type of symmetry, which was introduced by
Grünbaum . Consider a Venn diagram as being projected onto a sphere with
the rank 0 and rank 2n − 1 regions mapped to the north and south poles.
A polar flip is the rotation of sphere by π radians about an equatorial axis;
thus the northern and southern hemispheres are exchanged. The polar flip
of a plane Venn diagram is then obtained by projecting the flipped sphere
back onto the plane — this has the effect of interchanging the ”insides” and
”outsides” of all the curves. A Venn diagram is polar symmetric if it can be
drawn so that it is invariant under some polar flip.

Given a planar Venn diagram V , let VM be its mirror image, let VP be
its polar flip, and let VMP be the mirror image of its polar flip. On the
plane we define two Venn diagrams V and V ′ to be isomorphic if V ′ can be
changed into V , VM , VP , or VMP by a continuous transformation of the plane
(and thus the combinatorial structure is preserved). Note that the natural
definition of Venn diagram isomorphism usually does not include the polar
flips and we broaden the definition here to allow for polar flips as well.

A Venn diagram is convex if it is isomorphic to a Venn diagram with all
curves drawn convexly. It has been proven that a Venn diagram is convex
if and only if it is monotone [2]. In this paper we use the term convex
and monotone interchangeably. Figure 2 shows a simple monotone 6-Venn
diagram. If each curve of a Venn diagram touches the outermost region, then
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it is called an exposed Venn diagram. In a convex (monotone) Venn diagram,
every 1-region is adjacent to the empty region. Therefore, every convex Venn
diagram is exposed.

We will refer to a Venn diagram that is embedded on the sphere as a
spherical Venn diagram. Spherical Venn diagrams can potentially exhibit a
richer set of symmetries than planar Venn diagrams. There are three types
of isometries of the sphere. First, there is rotation about an axis; the polar
flip is an example of such an isometry. Secondly, there is reflection about
a plane. Finally, there is rotary reflection, which is a rotation followed by
a reflection across a plane orthogonal to the rotational axis. A particularly
simple type of rotary reflection is obtained when the rotation is by π radians.
In that case, each point is mapped to the corresponding point on the opposite
side of the sphere; we refer to this isometry as antipodal symmetry.

It is often easier to visualize a spherical Venn diagram by using its cylin-
drical representation where the surface of the sphere maps to a rectangle in
the plane. Consider a Venn diagram that has been projected onto the surface
of a sphere with radius r. A cylindrical projection of the Venn diagram can
be obtained by mapping the surface of the sphere to a 2πr by 2r rectangle on
the plane, where the equator of the sphere maps to a horizontal line of length
2πr and the north and south pole of the sphere are mapped to the top and
bottom sides of the rectangle respectively. In this representation, the top
of cylinder is usually assumed to represent the empty region and the bot-
tom of the cylinder represents the innermost region. Figure 2 shows a polar
symmetric 6-Venn diagram and its cylindrical representation and Figure 3
is the cylindrical representation of a 6-Venn diagram with a rotary reflective
symmetry (in particular, it has antipodal symmetry).

Depending on the face that we choose as the empty region, we can project
a diagram on the sphere to different diagrams on the plane. We will say
that a spherical Venn diagram is monotone if it has some monotone projec-
tion. However, other projections of a monotone diagram are not necessarily
monotone; if fact, every spherical n-Venn diagram with n > 2 has some
non-monotone planar projection. Note that, unlike the monotone Venn dia-
grams on the plane, it is not known whether every spherical monotone Venn
diagram is convexly-drawable or not.

2.1. Venn diagrams as graphs

A Venn diagram can be viewed as a plane graph where the intersection
points of the Venn diagram are the vertices of the graph and the sections of
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Figure 2: A simple monotone 6-Venn diagram and its cylindrical representation. The
diagram is polar symmetric and the black dots show where the equatorial axis intersects
the surface of the sphere. A flip by π radians about that axis leaves the diagram fixed, up
to a relabeling of the curves.

the curves that connect the intersection points are the edges of the graph.
Thinking of a Venn diagram as a graph has many benefits and will provide
us with one of our fundamental representations. In this representation the
faces of the graph are the regions of the diagram. We will use either term,
depending on our point of view, but note the following. By an r-region we
mean a region that is on the interior of r curves; by size of a face we mean
the number of edges that bound the face and by a k-face we mean a face of
size k.

For a plane graph with f faces, v vertices and e edges, Euler’s formula
states that f +v = e+2. The graph of an n-Venn diagram has 2n faces. In a
simple Venn diagram each vertex of this graph has degree 4; i.e. e = 2v, so
a simple n-Venn diagram has 2n − 2 vertices (i.e., intersection points). The
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Figure 3: Cylindrical representation of a 6-Venn diagram with antipodal symmetry (a type
of rotary reflection).

graph of a Venn diagram has the following properties.

Lemma 1. A simple Venn diagram on three or more curves is a 3-connected
graph [5].

Lemma 2. There are no two edges in a face of a Venn diagram that belong
to the same curve [5].

Lemma 3. In a simple Venn diagram on three or more curves there are no
faces of size two [5].

Lemma 4. In a simple Venn diagram with more than three curves, there are
no two faces of size 3 adjacent to another face of size 3.

Proof. Suppose there is a Venn diagram V that has two 3-faces adjacent
to another 3-face. Then as we can see in Figure 4, there are two faces (the
shaded regions) in the diagram with the same rank which contradicts the
fact that V is a Venn diagram. �

An embedding of graph G(V,E) on a surface S is a mapping τ of G to S
such that :

• For each vertex v ∈ V , τ(v) is a distinct point of S, i.e. the mapping
is injective;

• The edges of G are mapped to disjoint open arcs of S;

• For any edge e = (u, v), τ(e) joins the points τ(u) and τ(v);

• For any edge e = (u, v) and any vertex x where x 6= u and x 6= v, τ(e)
does not include τ(x).
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Figure 4: A single 3-face adjacent to two other 3-faces, the shaded regions have the same
rank.

The complement of τ(G) relative to surface S is a set of regions or faces in
S. The embedding is called a 2-cell embedding if every face is homeomorphic
to an open disk.

For a graph G(V,E), each edge e = (u, v) ∈ E has two oriented directions
which are represented as two half-edges (u, v)e and (v, u)e that are referred
to as twins. Let Ξ be the set of all half-edges of graph G. A rotation system
of G is a pair (σ, φ) where both σ and φ are permutations of Ξ. For each
a ∈ Ξ, σ(a) is the next half-edge in clockwise order in the circular list of
half-edges incident to the same vertex and φ(a) is the twin of a. We usually
describe a rotation system by the circular lists of incident edges of all vertices.
For a given graph G, it has been proven that each rotation system uniquely
describes a 2-cell embedding of G on some orientable surface S [6]. A planar
graph is a graph that can be embedded on the sphere (equivalently on the
plane). A plane graph is an embedded planar graph. The mirror of a plane
graph is a plane graph obtained by reversing the circular list of incident edges
with each vertex.

We follow Brinkmann and McKay’s [1] definitions regarding isomorphism
of plane graphs. Let G1 = (V1, E1, C1) and G2 = (V2, E2, C2) be two plane
graphs, where C1 and C2 indicate the rotation systems of G1 and G2 re-
spectively. We say G1 is isomorphic to G2, if there is a bijective mapping
φ from (V1, E1) to (V2, E2) that preserves the combinatorial structure; that
is, if (e1, e2, · · · , ek) is the circular list of edges in E1 incident to v ∈ V1,
then (φ(e1), φ(e2), · · · , φ(ek)) is the circular list of edges in E2 incident to
φ(v) ∈ V2.
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3. Representing Venn Diagrams

In this section we introduce the representations that are used when we
generate simple monotone Venn diagrams. First we introduce the Grünbaum
encoding and we prove that each Grünbaum encoding identifies a simple
exposed Venn diagram up to isomorphism. In the second part we discuss
the binary matrix representation where each 1 in the matrix represents an
intersection point of the corresponding Venn diagram. Having the matrix
representation of a diagram, it is easy to check if it is a Venn diagram or not.
In the third part we show how to represent simple monotone Venn diagrams
using integer compositions. We use this representation to generate all polar-
symmetric convex 6-Venn diagrams. Finally, we discuss representing simple
convex Venn diagrams using a finite sequence of exchanges of curve labels.
We generate all simple convex 6-Venn diagrams using this method.

3.1. Grünbaum Encoding

Grünbaum encodings were introduced by Branko Grünbaum as a way of
hand-checking whether two symmetric Venn diagrams are distinct [15]. We
generalize this concept here to all Venn diagrams, symmetric or not, and then
focus on the special properties that they have when the diagram is symmetric.
The Grünbaum encoding of a simple exposed Venn diagram consists of 4n
strings, 4 for each curve Ci. Call the strings wi, xi, yi, zi for i = 0, 1, . . . , n−1.
In fact, given any one of the w, x, y, z strings of a Venn diagram V , we can
obtain the other three. However, we need these four strings to compute the
lexicographically smallest string as the Grünbaum encoding representative
of V . Given the lexicographically smallest Grünbaum encoding of two Venn
diagrams, then we can check if they are isomorphic or not.

Starting from one of the curves in the outermost or innermost regions, we
first label the curves from 0 to n−1 in the clockwise or counter-clockwise di-
rection. The starting curves of these labelings are chosen arbitrarily, and thus
there can be several Grünbaum encodings of a given Venn diagram. Table 1
indicates whether the labeling starts on the inside or outside and whether the
curve is considered to be oriented clockwise or counter-clockwise. To get the
wi strings we arbitrarily pick a curve and label it 0. It intersects the outer
face in exactly one segment; the remaining curves are labeled 1, 2, . . . , n− 1
in a clockwise direction. Now that each curve is labeled, we traverse them,
recording the curves that each intersects, until it returns, back to the outer
face. Thus wi is a string over the alphabet {0, 1, . . . , n−1}\{i}. The strings
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Table 1: (a) Conventions for Grünbaum encoding. (b) Grünbaum encoding of the 5-Venn
diagram of Figure 1(b).

cw ccw
outermost w y
innermost x z

w : 1,3,2,4,1,4,2,4,1,3,1,4
x : 1,4,2,4,1,3,1,4,1,3,2,4
y : 1,4,2,4,1,3,1,4,1,3,2,4
z : 1,3,2,4,1,4,2,4,1,3,1,4

(a) (b)

xi, yi, zi are produced in a similar manner, except that we are starting on on
the inner face, or traversing in a counter-clockwise direction, or both, as in-
dicated in Table 1(a). In Table 1(b) we show part of the Grünbaum encoding
of Figure 1(b).

For curve i, each string of Grünbaum encoding starts with (i + 1) and
ends with (i + n − 1) mod n. Since each one of w, x, y or z uses a different
labeling of the same curves, there are permutations that map the labelings
of one to the labelings of other. Given a Grünbaum encoding {w, x, y, z} let
the permutations π, σ and τ map the curve labels of w to the curves labels
of x, y, z respectively. Let `i denote the length of string wi and let wi[k] be
the kth element of wi where k = 0, 1, . . . , `i − 1. We can get yσ(i) by

yσ(i)[k] = σ(wi[`i − k − 1]).

To obtain xπ(i) and zτ(i), we first determine the unique location p in wi where
all curves have been encountered an odd number of times (and thus we are
now on the inner face). We then have

xπ(i) = π(wi[(k + p) mod `i]),

and
zτ(i) = τ(wi[(k − i) mod `i]).

In the case of a rotationally symmetric Venn diagram we only need the
four strings w0, x0, y0, z0 to specify the Grünbaum encoding, since the others
will be a trivial relabeling of these. E.g., for any other curve i 6= 0, we can
get wi by wi = w0 + i mod n. The other three strings of curve i can be
obtained in the same manner from the corresponding strings of curve 0.

The following lemma gives the length of each string of the Grünbaum
encoding of a simple symmetric Venn diagram.
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Lemma 5. Each string of the Grünbaum encoding of a simple symmetric
n-Venn diagram has length (2n+1 − 4)/n.

Proof. Clearly each string will have the same length, call it L. Recall
that a simple symmetric n-Venn diagram has 2n − 2 intersection points. By
rotational symmetry every intersection point represented by a number in the
encoding corresponds to n − 1 other intersection points. However, every
intersection point is represented twice in this manner. Therefore, nL =
2(2n − 2), or L = (2n+1 − 4)/n. �

Let g be a Grünbaum string, i.e. g ∈ {w, x, y, z}. Each intersection point
of curves i and j is represented by an entry of value j in gi and an entry of
value i in gj. So each element of gi of value j uniquely corresponds to an
element of gj of value i and vice versa. We call the corresponding elements
of gi and gj twins. Let gi[k] = j be an intersection of curve i with curve
j. For any curve c other than i and j, let ηc be the number of occurrences
of c in gi up to gi[k], starting from the first element of gi. For each of the
four Grünbaum strings of curve i, the parity of ηc shows whether gi[k] is in
the interior or exterior of curve c. For example, for g = w or g = y, if ηc
is odd then gi[k] is in the interior of curve c and if ηc is even then gi[k] is
in the exterior of curve c. The weight of gi[k] is defined to be the number
weight(gi[k]) = (rn−1 · · · r1r0)2 where rk = 0 if k ∈ {i, j} and otherwise
rk = ηk mod 2.

Lemma 6. Let g be a Grünbaum string of an n-Venn diagram, where n ≥ 3.
For each pair of curves (i, j), if gi[k] = j for some k, then there is a unique
index l such that weight(gj[l]) = weight(gi[k]).

Proof. Since gi[k] = j, there is a corresponding intersection point P where
i and j intersect. Thus, when following curve j we will also encounter P ,
and so there must be an l such that gj[l] = j.

To show uniqueness, we argue by contradiction, and assume that for some
m 6= l, there is another entry in gj such that weight(gj[m]) = weight(gj[l]).
This entry must correspond to a second point of intersection P ′ of curves i
and j. Let R be the region of the Venn diagram that is interior to exactly
the same set of curves as P and P ′, and let r be the rank of R. Thus both
P and P ′ must be on the boundary of R. Thus, by Lemma 2, R must be a
2-face. But this is a contradiction, since Lemma 3 states that there are no
2-faces in a Venn diagram if n ≥ 3. �
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Unlike the corresponding theorem in [4], the theorem below holds for all
simple Venn diagrams, monotone or not.

Theorem 7. Given a Grünbaum encoding G of a simple exposed n-Venn
diagram V , we can recover V from G, up to isomorphism of Venn diagrams.

Proof. It is known that a plane embedding of a 3-connected planar graph
is unique, once the outer face has been identified [19]. We will present a con-
structive proof which shows that the Grünbaum encoding determines a 2-cell
embedding of the diagram on the sphere. Assume that the given Grünbaum
encoding is {wi, xi, yi, zi}ni=1. We use a three step algorithm to construct the
rotation system that uniquely represents the Venn diagram. In the first two
steps we associate a vertex label with each wi[k] for all i and k, and then
based on those labels, we create the rotation system in step 3.

• Step one : Starting with w0, for each wi[k] with wi[k] > i, we associate
a new vertex label with wi[k]. At the end of this process there are 2n−2
distinct vertex labels since every intersection occurs exactly twice in
w. At the end of this step vertex labels have been assigned to all
intersections of curves i and j, where 0 ≤ i < j ≤ n− 1.

• Step two : We now associate vertex labels with the remaining entries
of w; but we must be careful to provide the correct label, since the same
pair of curves can intersect multiple times. Let v be the vertex label
associated with j = wi[k] where i < j. We need to uniquely locate the
value of ` such that i = wj[`] is the twin of wi[k]. By Lemma 6 there
will be a unique value of ` such that weight(wi[k]) = weight(wj[`]),
which can be determined by a simple scan of wj. We then associate v
with wj[`]. After scanning each wi, every entry in w has an associated
vertex label, which we hereafter just refer to as vertices.

• Step three : In this step we construct a circular list of four oriented
edges for each vertex. Let w′i denote the string wi, but with each entry
wi[k] replaced with its associated vertex. Assume that curves i and j
intersect at vertex v1 as is shown below

w′i : · · · v0 v1 v2 · · ·
w′j : · · · v3 v1 v4 · · ·

By computing the parity of the number of intersections between i and j
along wi, we can determine whether curve i is moving into the interior
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of curve j at v1, or whether it is moving into the exterior. Since each wk
is being traversed in a clockwise direction starting at the unbounded
face, the interior of wk is always to its right. Thus, if the parity is odd,
then we are moving into the interior, and if the parity is even, then we
are moving into the exterior. In the former case the circular order of
oriented edges incident to v1 must be

{(v1, v0)i, (v1, v4)j, (v1, v2)i, (v1, v3)j},

and in the latter case, the circular order must be

{(v1, v0)i, (v1, v3)j, (v1, v2)i, (v1, v4)j}.

The notation (v1, v0)i indicates the oriented edge from v1 to v0 along
curve i. Using the same method for each vertex, we get a rotation
system that uniquely identifies a 2-cell embedding of the Venn diagram,
up to isomorphism.

The rotation system only depends on which string of w, x, y, or z is chosen
as the first string of Grünbaum encoding. Since there exist permutation
mappings to deduce all other strings from any of w, x, y, or z, all rotation
systems that arise from the three steps are equivalent up to isomorphism.
Therefore, the Grünbaum encoding uniquely identifies the Venn diagram. �

To end this section we note that the Grünbaum encoding can be used
to determine whether a Venn diagram is polar symmetric or whether it has
antipodal symmetry (in both instances, given that the north and south poles
have been fixed). The diagram is polar symmetric if there are integers k and
k′ such that wi = zi+k and xi = yi+k′ , where index computations are taken
mod n. Similarly, the diagram has antipodal symmetry if there are integers
k and k′ such that wi = xi+k and yi = zi+k′ , where index computations are
taken mod n.

3.2. The matrix representation

Every simple monotone n-Venn diagram is exposed and thus every 1-
region is adjacent to the empty region. So the empty region surrounds a
“ring” of

(
n
1

)
1-regions. An intersection point is said to be part of ring i if of

the four incident regions, two are in ring i and the other two are in ring i− 1
and i + 1. Since each region is started by one intersection point and ended
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by another one, there are
(
n
1

)
intersection points in the first ring. Similarly,

every 2-region is adjacent to at least one 1-region. So, there are
(
n
2

)
2-regions

that form the second ring surrounded by the first ring and which contains(
n
2

)
intersection points. In general, in a simple monotone n−Venn diagram,

there are n− 1 rings of regions, where all regions in a ring are in the interior
of the same number of curves and every region in ring i, 1 ≤ i ≤ n − 1, is
adjacent to at least one region in ring i− 1 and also to at least one region in
ring i + 1. The number of intersection points in the ith ring is the same as
the number of regions in the ith ring, which is

(
n
i

)
. The rings have different

colours in Figure 1(c).
Thus a simple monotone n−Venn diagram can be represented by a (n−

1) × (2n − 2) binary matrix with exactly one 1 in each column, where each
1 in the matrix represents an intersection point in the Venn diagram. Row
i of the matrix corresponds to ring i of the Venn diagram, which will thus
contain

(
n
i

)
1’s. Furthermore, because there are no 2-faces, we may assume

that there are no two adjacent 1s in any row. Figure 5 shows the matrix
representation of 1/7-th of the symmetric 7-Venn diagram of Figure 1(c).

Because of the property of symmetry, a symmetric n-Venn diagram can
be partitioned to n identical circular sectors, where each sector is specified
by two rays from the point of symmetry offset by a central angle of 2π/n
radians. Therefore, having an nth of the matrix, which we call the slice
matrix, is enough to represent the diagram. We simply copy the slice matrix
n times to get the entire matrix representation.

If matrix M is a representation of a Venn diagram, then any matrix
obtained by a circular shift of M by some number of columns is also a repre-
sentation of the same Venn diagram. Therefore, we can always shift M such
that the first entry of the first column is a 1. Such a slice matrix with a 1
bit at the upper left entry is called a standard matrix.

Note that there are
(
m−k+1

k

)
binary sequences of length m that have k

1s, with the restriction that no 1s are adjacent. Thus we can generate all
possible standard matrices by generating the n distinct combinations, whose
sizes, in the case of n = 7, correspond to the following product of binomial
coefficients:(

18

0

)
·
(

17

3

)
·
(

14

5

)
·
(

9

5

)
·
(

4

3

)
·
(

1

1

)
= 686, 125, 440. (1)

This is a large but manageable number of possibilities.
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(a)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(b)

Figure 5: Matrix representation of one slice of the symmetric 7-Venn diagram of Figure
1(c), the diagram known as “Adelaide.”

Given a standard matrix representation M , we need to check that there
are no two regions with the same rank to check if it represents a valid Venn
diagram. To compute the rank of a region, we need to know the label of
the curves that contain the region. For this purpose it is useful to consider
another matrix, which we call the P -matrix. It consists of n rows and 2n− 2
columns. The initial column is the identity, and each successive column is
obtained from its predecessor by swapping the two values in a column if there
is a 1 in the corresponding column of matrix Mn (M copied n times), that
is, if Mn

i,j = 1 then Pi,j+1 = Pi+1,j and Pi+1,j+1 = Pi,j. For example the first
19 columns of the P -matrix for the matrix M of Figure 5 is given below.
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0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 2 2 2 2 4 4 4 4 4 4 3 3 3 3 3 3 3
2 2 0 3 3 4 2 2 2 5 5 3 4 4 4 0 0 0 0
3 3 3 0 4 3 3 3 5 2 3 5 5 5 0 4 5 5 5
4 4 4 4 0 0 0 5 3 3 2 2 2 0 5 5 4 2 2
5 5 5 5 5 5 5 0 0 0 0 0 0 2 2 2 2 4 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

Suppose that the vector [c0, c1, . . . , cn−1] is a column of the P -matrix,
where c0 is the label of the outermost(top) curve and cn−1 is the label of the
innermost(bottom) curve. Then the region at ring i, 1 ≤ i ≤ n− 1, is in the
interior of curves c0, · · · , ci−1 and the rank of the region is

∑i−1
k=0 2ck . If the

next column of P is obtained by exchanging ci and ci+1, then we have created
exactly one new region, a region with rank

∑i
k=0 2ck − 2ci−1 . Proceeding

from left to right through P , we can then compute the rank of each region.
Matrix P (and hence matrix M) represents a valid simple monotone Venn
diagram if we get exactly 2n− 2 regions with distinct ranks and the identity
permutation C = [0, 1, . . . , n− 1] after applying the final exchange. Initially,
the first column is the identity also, and the regions corresponding to that
first column have ranks 1, 3, 7, . . . , 2n−1 − 1.

3.3. Composition representation

In this subsection we introduce a representation of Venn diagrams that is
based on integer compositions. In this representation, we use a sequence of
non-negative integers to show the size of faces in each ring and also to specify
the position of intersection points of the next ring relative to the position of
intersection points in the current ring. A k-composition of n is a sequence of
non-negative integers (a1, a2, · · · , ak) such that n =

∑
ai. Let C(n, k) denote

the set of all k-compositions of n.
In a simple monotone n-Venn diagram there are

(
n
i+1

)
intersection points

at ring i + 1 that are distributed among
(
n
i

)
intersection points at ring i.

Starting from an intersection point at ring i, we can specify the number of
intersection points at ring i + 1 between each two consecutive intersection
points of ring i using a composition of

(
n
i+1

)
into

(
n
i

)
parts. Consider a

generic face in ring i, like that shown in Figure 6. It is delimited by some
two intersection points that are adjacent to regions on the same ring. If
there are p intersections on the lower part of the face (such intersections are
adjacent to k-faces with k ≥ i), then p will be part of the composition for
ring i.

17



u

p intersection points

Enclosed by i curves

v

Figure 6: An i-face with p lower vertices.

A simple monotone n-Venn diagram V can be represented by a sequence
CV = (c1, c2, . . . , cn−2) where

ci ∈ C
((

n

i+ 1

)
,

(
n

i

))
.

The composition ci is determined by following ring i in a circular fashion,
recording for each i-face the number of intersection points that only lead to
k faces, where k > i. Thus the underlying compositions are circular. To be
able to recover the diagram from the compositions, we need to specify where
each composition starts. Given ci = p + q + r + · · · , the starting face for
ci+1 is one that lies below the face corresponding to p, call it F . Suppose
that F is joined to the rest of the ith ring by vertices u and v on its left and
right, respectively. If p > 1, then the face is the one that lies between the
first two of the lower p intersection points (see Figure 6). If p = 1, then the
face is the one that lies between the lower vertex and v. If p = 0, then the
face is the one that lies below the edge from u to v. With these conventions,
we say that CV is a composition representation of V . A simple monotone
Venn diagram does not necessarily have a unique composition representation
because starting from a different intersection point on the first ring we may
get a different composition representation of the Venn diagram. Figure 7
shows the composition representation of the 6-Venn diagram of Figure 2.
The black dots indicate where the various faces of the compositions start.

We now list several observations that will help us cut down the size of
the search space of the generating algorithm.

Remark 1. For any simple monotone n-Venn diagram V , the largest part
of ci in the composition representation is at most n− i− 1.
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(a)

( (3, 3, 3, 3, 2, 1) ,
(1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2),
(1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1),
(1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0) )

(b)

Figure 7: (a) Cylindrical representation of 6-Venn diagram, (b) composition representation
of (a).

Proof. A region at ring i is in the interior of i curves. Since the size of a
region is at most n and no two edges belong to the same curve by Lemma 2,
at most n − i remaining curves can be used to shape the region. As shown
in Figure 6, to put p intersection points between the two end points of the
region on the next ring, we need p + 1 curves, p − 1 curves for the bottom
side and two curves for the left and right sides. So, p ≤ n− i− 1. �

Remark 2. In the composition representation of any simple monotone Venn
diagram with more than 3 curves, there are no two non-adjacent 1’s in c1.

Proof. Suppose, there is such a Venn diagram V , then the first ring of the
Venn diagram will be like Figure 8 , where regions A and D correspond to
non-adjacent 1’s in the composition and A 6= D. Then A ∩ D = ∅ which
contradicts the assumption that V is a Venn diagram. So in the first ring
composition there are at most two 1’s which must be adjacent. �

Remark 3. There are no two consecutive 0’s in c2 for the composition rep-
resentation of any simple monotone n-Venn diagram.

Proof. By Lemma 4. �
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Figure 8: Non-Adjacent 1’s in the first ring composition

Definition 1. Let r1, r2 ∈ C(n, k) be two compositions of n into k parts. r1
and r2 are rotationally distinct if it is not possible to get r2 from any rotation
of r1 or its reversal.

Let Fn denote the set of all rotationally distinct compositions of
(
n
2

)
into

n parts such that for any r ∈ Fn there are no two non-adjacent parts of 1
and all parts are less than or equal to n− 2.

Lemma 8. If c1 is the composition corresponding to the first ring of a simple
monotone n-Venn diagram, then c1 ∈ Fn.

Proof. Given a simple monotone n-Venn diagram, suppose we get the com-
position representation P of V by picking a particular intersection point x in
the first ring as the reference point. Now let P ′ be another representation of
V using any other intersection point different than x as the reference point.
It is clear that c′1 in P ′ is a rotation of c1 in P . Also for any composition
representation P

′′
of the mirror of V the first composition c

′′
1 in P

′′
is a ro-

tation of the reversal of c1. By the Remarks 1 and 2 the largest part of c1
is n − 2 and there are no two non-adjacent 1’s in c1. Therefore, there is a
composition c ∈ Fn which is rotationally identical to c1. �

3.4. Permutation sequence

Recall that when testing whether a standard matrix represented a Venn
diagram we used the P-matrix. But instead of storing the P-matrix as a
sequence of permutation, we could simply record the row in which the in-
tersection occurs, as is shown in Figure 9. If π and π′ are two successive
permutations then the corresponding entry in the permutation sequence is
i if π′ is obtained from π by exchanging π(i) and π(i − 1). We call the re-
sulting sequence of length 2n − 2 the permutation sequence. It is clear that
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Figure 9: The P-matrix of one slice of Grünbaum ’s 5-ellipses Venn diagram. Shown below
it are the first six values of the permutation sequence.

there are
(
n
i

)
elements of value i in the sequence, where i ∈ {1, 2, · · · , n− 1}.

Furthermore, since we assume that the first permutation of the P-matrix is
the identity, the first entry of the permutation sequence is a 1.

Using the matrix representation or the composition representation we
generate Venn diagrams vertically (top-to-bottom). However, permutation
sequences generate Venn diagrams horizontally from left-to-right. This al-
lows us to immediately compute the rank of regions as we move from one
permutation to the next, and thus can potentially help in reducing the size
of the backtracking tree, since non-Venn diagrams are recognized early.

4. Generating algorithms

4.1. Generating simple symmetric convex 7-Venn diagrams

We used the matrix representation to generate all simple symmetric mono-
tone 7-Venn diagrams. The generating algorithm is shown in Algorithm 1.
A slice matrix of a simple symmetric monotone 7-Venn diagram has 6 rows
and 18 columns where the number of 1’s in rows 1, 2, · · · , 6 are 1, 3, 5, 5, 3, 1
respectively. To generate each row we are generating restricted combinations;
e.g., all bitstrings of length 18 with k 1’s, no two of which are adjacent. The
total number of combinations generated is the number given in (1).

For each generated slice matrix, we copy it n times to get a complete
matrix M , which we then convert into the corresponding P -matrix. Then
we check if P represents a valid Venn diagram by counting the number of
distinct regions. This process was described earlier in the paper.
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To eliminate isomorphic Venn diagrams, we use the Grünbaum encoding,
which is easily created from the P -matrix in O(2n) time. Since the diagram
is symmetric, we only need wi for i = 0 and similarly, we only need x0,
y0, and z0 (which are easily obtained from w0 using the permutation map-
pings explained earlier). We first initialize a vector ρ with the permutation
of {0, 1, · · · , n − 1} such that the curves appear on the outer boundary of
the outermost ring in the order ρ(1), ρ(2), . . . , ρ(n − 1). To get w0, we scan
P left-to-right and follow curve 0’s intersections with other curves, translat-
ing them by ρ−1. The lexicographically smallest string of {w0, x0, y0, z0} is
chosen as the representative Grünbaum encoding of the Venn diagram. Com-
paring the Grünbaum encodings of the previously generated Venn diagrams
with the Grünbaum encoding of the current Venn diagram, we can eliminate
isomorphic Venn diagrams.

Algorithm 1 Generating all simple symmetric convex 7-Venn diagrams

1: procedure GenSymSeven(i)
2: G← {}
3: V ← {}
4: for each standard slice matrix M do
5: for i← 1, · · · , 7 do
6: X ← X ·M
7: end for
8: if isV enn(X) then
9: g ← Grünbaum encoding of X

10: if g /∈ G then
11: G← G ∪ g
12: V ← V ∪X
13: end if
14: end if
15: end for
16: end procedure

Using this algorithm we found exactly 23 simple symmetric monotone
7-Venn diagrams of which 6 are polar symmetric. See Figures 10 and 11 for
attractive renderings of these diagrams.

These computations were checked by using an algorithm based on the
composition representation, and using a depth-first-search labeling algorithm
for the isomorphism check.
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Figure 10: All simple monotone polar symmetric 7-Venn diagrams, using the names given
to them by Edwards [7]. Around each diagram is the lexicographically smallest Grünbaum
encoding

.
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Figure 11: All 17 simple monotone symmetric 7-Venn diagrams that do not have polar
symmetry. Around each diagram is the lexicographically smallest Grünbaum encoding.
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4.2. Generating simple polar symmetric 6-Venn diagrams

Given the upper/lower half of the cylindrical representation of a polar
symmetric Venn diagram, one can generate the whole diagram by creating a
copy of the given half, turning it upside down and rotating it until the two
parts match together. So, to generate a polar symmetric monotone Venn
diagram, we need only to generate the first dn−2

2
e compositions.

Two halves of the diagram can match only if gluing them using the inter-
section points doesn’t create any faces of size 2. Given the last composition
of the upper half, for each positive part aj there are aj − 1 edges that bound
the corresponding face from the bottom and there is a gap between two faces
corresponding to two consecutive parts of the composition. So, we can map
the composition to a bit-string where each 1 represents a bounding edge of
a face and each 0 represents the gap between two faces. The length of bit-
string is the same as the sum of all parts of the composition. In other words
the composition (a1, a2, · · · , ak) is mapped to the following bit-string.

a1−1 bits︷ ︸︸ ︷
11 · · · 1 0

a2−1 bits︷ ︸︸ ︷
11 · · · 1 0 · · · 0

ak−1 bits︷ ︸︸ ︷
11 · · · 1 0

We can find all matchings of the two halves by computing the bitwise
“and” of the bit-string and its reverse for all left rotations of the reverse
bit-string. Any result other than 0 means that there is at least one face
of size 2 in the middle. Then for each matching we compute the matrix
representation of the resulting diagram. The matrix can be obtained by
sweeping the compositions from left to right and computing the position of
each intersection point. Checking each resulting matrix for all compositions
gives us all possible polar symmetric 6-Venn diagrams.

Using the exhaustive search based on this algorithm we found 375 simple
monotone polar symmetric 6-Venn diagrams. This result was independently
checked by using a separate program that is based on a different search
method and which is described in the next subsection. Table 2 shows the
number of Venn diagrams for each particular composition of the first level.

4.3. Generating simple convex 6-Venn diagrams

In this subsection we explain the algorithm for generating all simple con-
vex 6-Venn diagrams using what we call the permutation representation. The
algorithm is based on a simple idea: Starting from the identity permutation,
we generate via a backtracking program, a sequence of permutations. For
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Algorithm 2 Generating all simple convex polar-symmetric 6-Venn dia-
grams

1: procedure GenPolarSix(i)
2: for each composition (a1, a2, · · · , a6) ∈ F6 do
3: for each composition (b1, b2, · · · , b15) ∈ C(20, 15) do
4: create the corresponding upper and lower halves
5: for i← 1, · · · , 20 do
6: glue the upper and lower halves
7: if there are no parallel edges in the diagram then
8: compute matrix X representing the diagram
9: if isV enn(X) then

10: add X to the list of Venn diagrams
11: end if
12: end if
13: rotate lower half one point to the left
14: end for
15: end for
16: end for
17: end procedure
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Composition Venn Diagrams Composition Venn Diagrams
4 4 3 2 1 1 25 2 3 4 3 2 1 5
4 3 4 2 1 1 0 4 2 2 4 2 1 0
3 4 4 2 1 1 38 3 3 2 4 2 1 9
4 4 2 3 1 1 0 2 4 2 4 2 1 0
4 3 3 3 1 1 12 3 2 3 4 2 1 3
3 4 3 3 1 1 9 4 3 2 2 3 1 9
4 2 4 3 1 1 0 3 4 2 2 3 1 15
4 3 2 4 1 1 0 4 2 3 2 3 1 0
4 4 2 2 2 1 15 3 3 3 2 3 1 9
4 3 3 2 2 1 2 3 2 4 2 3 1 0
3 4 3 2 2 1 30 4 2 2 3 3 1 12
4 2 4 2 2 1 0 3 3 2 3 3 1 4
3 3 4 2 2 1 6 4 2 2 2 4 1 0
2 4 4 2 2 1 13 4 3 2 2 2 2 15
4 3 2 3 2 1 7 4 2 3 2 2 2 22
3 4 2 3 2 1 8 3 3 3 2 2 2 6
4 2 3 3 2 1 6 4 2 2 3 2 2 1
3 3 3 3 2 1 41 3 3 2 3 2 2 21
2 4 3 3 2 1 22 3 2 3 2 3 2 3
3 2 4 3 2 1 7

Table 2: Number of polar symmetric 6-Venn diagrams for F6
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each permutation we try all possible exchanges of adjacent curves to get the
next permutation until we get a sequence of length 62 that represents a Venn
diagram. The height of the recursion tree of the backtracking algorithm is
thus 62. There are five possible choices for the first exchange and four choices
for each of the other exchanges. So, there are 5 · 461 ≈ 2.66 · 1037 possible
sequences in total. Therefore, we need some good rules to prune the search
tree as much as possible.

As with matrix representation, if a sequence of exchanges X represents
a valid Venn diagrams then any rotation of X represents the same Venn
diagram. A sequence of exchanges X is canonic if among all rotation of
X, it has the largest corresponding sequence of permutations. We use the
canonical form to eliminate all sequences which are identical to a canonic
sequence up to rotations. Given a prefix of length k of an exchange sequence
S = (s1s2 · · · s62), if there is some i, with 1 < i ≤ k, such that starting
at position i in S with identity permutation we get a larger permutation
sequence then S is not canonic. So we can check the canonicity for each
generated prefix of exchanges and reject the non-canonic exchange sequences
as soon as possible.

As another rule, if there are two exchanges in two adjacent permutations
such that the positions of the exchanges do not overlap, then the exchange of
the lower position comes first. Because the resulting diagram in both cases
is the same and we don’t need to generate both of them.

As was mentioned before, we can compute and check the rank of regions
as we move from one permutation to the next. So we can cut a non-Venn di-
agram at the earliest stage of recursion. Also, not explicit in the pseudocode
on the next page, in our actual code we also exploit some other simple prop-
erties of convex Venn diagrams, such as Lemma 2, to speed up the program.

The pseudocode for generating all simple convex 6-Venn diagram is shown
in Algorithm 3. Input i is the next exchange. S is the exchange sequence
and V is the list of Venn diagrams that have been found so far. The current
permutation of curve labels is stored in vector C and vector rank is used to
store the rank of current region of each ring. The number of regions that
have been visited so far is stored in rno and vector visited is used to keep
track of the visited regions. We start with the identity permutation as the
curve labels. So, vector rank must be initialized to [1, 3, 7, 15, 31], because
as was mentioned before, the rank of the region at ring i is

∑i−1
k=0 2Ck . Two

consecutive regions at ring i only differ in C[i] and C[i + 1]. To update the
rank vector, after swapping C[i] and C[i + 1], we need to add curve C[i] to
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the new region and exclude C[i+ 1] from it. The rank of regions of the other
rings remain unchanged. Lines 24 to 27 of the algorithm restore the variables
to their state before the recursive call.

A distributed version of the algorithm takes only a few hours on a machine
with 64 processors to generate all simple monotone 6-Venn diagrams. There
are 39020 such Venn diagrams in total.

4.4. Testing for symmetry

In this subsection we describe how we tested each of the 39020 planar
monotone 6-Venn diagrams to determine whether they had any non-trivial
automorphism when embedded on the sphere.

It is well-known that a 3-connected planar graph has a unique embedding
(under the assumption that reversing the sense of clockwise for an embedding
gives an equivalent embedding). Because of this property, 3-connected planar
graphs can be put into a canonical form, and it is possible to compute the
automorphism group using a very simple algorithm based on a special type of
breadth-first search (called a clockwise BFS ) that runs in O(n2) time in the
worst case. It is not clear who originally came up with this elegant algorithm.
One place it has been explained and used is [8].

Given a rotation system for a graph, a clockwise breadth-first search (BFS)
starts at a specified root vertex r, and has a specified neighbour f of r
designated to be the first child of r. A BFS is performed with the restrictions
that the neighbors of r are traversed in clockwise order starting with the
first child f . When the neighbors of a non-root vertex u are visited, they are
traversed in clockwise order starting with the BFS parent of u. A clockwise
BFS labels each vertex with its breadth-first index.

To get the canonical form for an embedding, consider all possible selec-
tions of a root vertex, a first child, and the direction representing clockwise
and choose one giving a lexicographically minimized rotation system. The
selections giving an identically labeled rotation system give the automor-
phisms. If there are no automorphisms which have different choices for the
clockwise direction, then the embedding is said to be chiral, and otherwise it
is achiral.

The algorithm above gives the automorphisms that can be realized when
embedding the graph on the sphere (these will be called the spherical auto-
morphisms. To consider only those that map the innermost face (i.e., the
face that is interior to all the curves) to itself, one trick that can be used
is to embed a new vertex w inside the innermost face and connect it to all
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Algorithm 3 Generating all simple convex 6-Venn diagrams

1: procedure GenSix(i, rno)
2: if S is not canonic then
3: return
4: end if
5: if rno = 62 then
6: if C = id then
7: V ← V ∪ S
8: end if
9: return

10: end if
11: r ← rank[i]
12: if visited[r] = 1 then
13: return
14: end if
15: visited[r]← 1
16: S ← S ∪ {i}
17: C[i] :=: C[i+ 1]
18: rank[i]← rank[i] + 2C[i] − 2C[i+1]

19: for j ← i− 1, . . . , n− 1 do
20: if j 6= i then
21: GenSix(j, rno+ 1)
22: end if
23: end for
24: rank[i]← rank[i]− 2C[i] + 2C[i+1]

25: C[i] :=: C[i+ 1]
26: S ← S \ {i}
27: visited[r]← 0
28: end procedure
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the vertices on the innermost face. Then apply the clockwise BFS but only
with the selections that have w as the root vertex. These are the planar
automorphisms (they are the automorphisms realizable for a picture of an
embedding drawn on the plane).

The polar automorphisms are those which map the innermost face either
to itself or to the external face. The trick used to compute these is to add
two new vertices; w1 which is connected to the vertices on the innermost face,
and w2 which is connected to the vertices on the external face. Then apply
the clockwise BFS selections that have either w1 or w2 as the root vertex.

Using the above described ideas we found that 375 of them are polar
symmetric, which confirms our results of generating polar symmetric 6-Venn
diagrams using compositions. And 270 of the generated Venn diagrams have
the (antipodal) rotary reflection symmetry. Amongst all simple convex 6-
Venn diagrams, we found 27 Venn diagrams with automorphism group order
of 4. There are only 6 Venn diagrams that have an automorphism group order
of 8; these are shown in Figure 12. In all six cases, there are two curves that
intersect in only two points. Imagine each Venn diagram as being projected
on a sphere such that these two curves map to two great circles that meet
perpendicularly at the north and south poles. The three cases on the left
side of Figure 12 have the 4-fold rotational symmetry about an axis through
the poles. The three other cases have the refection symmetry across the two
planes which pass through the two great circles. The other factor of 2 comes
from the fact that all of these diagrams are polar-symmetric.

5. Concluding remarks

In this paper we investigated general techniques for generating simple
monotone Venn diagrams. We proved that every Grünbaum encoding uniquely
identifies a simple monotone Venn diagram up to isomorphism and we ex-
tended the proof to simple exposed Venn diagrams where every curve touches
the empty region. We introduced different representation of simple monotone
Venn diagrams and we described some generating algorithm based on these
representations to exhaustively list Venn diagrams. Using these algorithm
we showed that there are 23 simple monotone symmetric 7-Venn diagrams
where amongst of them six cases are polar-symmetric. For simple monotone
Venn diagrams on six curves, we showed that there are 39020 diagrams in
total, 375 of which are polar-symmetric.
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Figure 12: All simple convex spherical 6-Venn diagrams whose isometry groups have order
8. The diagrams on each row can be transformed, one into the other, by flipping an
opposing pair of quadrants.
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0

0

x0 = y0
1 2 4 3 4 2 1 4 1 5 3 1 2 1 4 2 3 2 4 1 2 4 3 6
1 2 4 3 4 2 1 4 1 5 3 1 2 1 4 2 3 2 4 1 2 4 3 6

x1 = y1
2 4 3 4 2 0 4 0 3 5 0 2 0 4 2 3 2 4 0 6 3 2 4 0
2 4 3 4 2 0 4 0 3 5 0 2 0 4 2 3 2 4 0 6 3 2 4 0

x2 = y2
3 1 0 4 5 3 1 0 4 1 0 3 0 1 4 0 4 3 6 4 1 4 0 1
3 1 0 4 5 3 1 0 4 1 0 3 0 1 4 0 4 3 6 4 1 4 0 1

x3 = y3
4 1 5 0 2 4 2 0 1 0 2 6 4 1 0 1 4 2 4 1 5 0 2 4
2 0 1 0 2 6 4 1 0 1 4 2

x4 = y4
5 2 1 0 3 0 1 2 0 2 6 3 2 1 2 0 1 3 1 0 2 1 0 3
5 2 1 0 3 0 1 2 0 2 6 3 2 1 2 0 1 3 1 0 2 1 0 3

x5 = y5 6 4 1 3 0 2 6 2 0 3 1 4
x6 = y6 0 2 3 4 1 5 1 4 3 2 0 5

Figure 13: A spherical 7-Venn diagram with a 4-fold rotational symmetry and the polar
symmetry. Shown below the diagram is its lexicographically smallest Grünbaum encoding.
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It remains to do an exhaustive enumeration of all monotone simple 7-Venn
diagrams. Prior to this paper, the only spherical symmetries known were 7-
fold rotations and polar flips. However, by hand we have created a spherical
7-Venn diagram with a 4-fold rotational symmetry and a polar symmetry;
see Figure 13. The lexicographically smallest Grünbaum encoding of the
diagram is shown below it. Note that because of the polar symmetry x and y
(also w and z) strings of the Grünbaum encoding are identical. Undoubtedly
there are other such examples of 7-Venn diagrams with isometry groups of
order 4 and 8.

5.1. Acknowledgments

We thank the referees for their insightful comments which led to im-
provements in the paper. At one of the referees suggestions we have made
some of our software available. See the page http://webhome.cs.uvic.ca/

~ruskey/Publications/SixVenn/SixSevenVenn.html.

References

[1] G. Brinkmann, B.D. McKay, Fast generation of planar graphs, MATCH
Commun. Math. Comput. Chem. 58 (2007) 323–357.
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