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Abstract. A symmetric Venn diagram is one that is invariant under rotation, up to a relabel-
ing of curves. A simple Venn diagram is one in which at most two curves intersect at any point.
In this paper we introduce a new property of Venn diagrams called crosscut symmetry, which
is related to dihedral symmetry. Utilizing a computer search restricted to crosscut symmetry
we found many simple symmetric Venn diagrams with 11 curves. This answers an existence
question that has been open since the 1960’s. The first such diagram that was discovered is
shown here.
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1 Introduction

Mathematically, an n-Venn diagram is a collection of n simple closed curves in the
plane with the following properties: (a) Each of the 2n different intersections of the
open interiors or exteriors of the curves is a non-empty connected region; (b) there
are only finitely many points where the curves intersect. If each of the intersections
is of only two curves, then the diagram is said to be simple. A k-region (0 ≤ k ≤ n)
in an n-Venn diagram is a region which is in the interior of exactly k curves. In a
monotone Venn diagram every k-region is adjacent to at least one (k − 1)-region (if
k > 0) and it is also adjacent to at least one (k+1)-region (if k < n). Monotone Venn
diagrams are precisely those that can be drawn with convex curves [1]. The diagrams
under consideration in this paper are both monotone and simple.

A n-Venn diagram is symmetric if it is left fixed (up to a relabeling of the curves)
by a rotation of the plane by 2π/n radians. Interest in symmetric Venn diagrams was
initiated by Henderson in a 1963 paper in which he showed that a symmetric n-Venn
diagram could not exist unless n is a prime number [8] (see also [13]). Of course, it is
easy to draw symmetric 2- and 3-Venn diagrams using circles as the curves, but it was
not until 1975 that Grünbaum [5] published a simple symmetric 5-Venn diagram, one
that could be drawn using ellipses. Some 20 years later, in 1992, simple symmetric
7-Venn diagrams were discovered independently by Grünbaum [6] and by Edwards
[3]. The total number of non-isomorphic simple 7-Venn diagrams that are convexly
drawable is also known [11].

However, the construction of a simple symmetric 11-Venn diagram has eluded
all previous efforts until now. We know of several futile efforts that involved either
incorrect constructions, or unsuccessful computer searches.

It should be noted that if the diagrams are not constrained to be simple, then
Hamburger [7] was the first to discover a (non-simple) symmetric 11-Venn diagram,
and Griggs, Killian and Savage (GKS) have shown how to construct symmetric, but
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highly non-simple, n-Venn diagrams whenever n is prime [4]. These constructions,
in a sense, are maximally non-simple since they involve points where all n curves
intersect. Some progress towards “simplifying” the GKS construction is reported in
[10], but their approach could never succeed in producing truly simple diagrams.

Part of the interest in Venn diagrams is due to the fact that their geometric dual
graphs are planar spanning subgraphs of the hypercube; furthermore, if the Venn
diagram is simple then the subgraph is maximum in the sense that every face is
a quadrilateral. Symmetric drawings of Venn diagrams imply symmetric drawings
of spanning subgraphs of the hypercube. Some recent work on finding symmetric
structures embedded in the hypercube is reported in [9] and [2].

2 Crosscut symmetry

We define a crosscut of a Venn diagram as a segment of a curve which sequentially
“cuts” (i.e., intersects) every other curve without repetition. Except for n = 2 and
n = 3, where the symmetric 2-Venn and 3-Venn diagrams have 4 and 6 crosscuts
respectively, a symmetric n-Venn diagram either has n crosscuts or it has none. Re-
ferring to Figure 1(a), notice that each of the 7 curves has a crosscut.

Lemma 1. If n > 3, then a symmetric n-Venn diagram has at most one crosscut per
curve.

Proof. A curve of a Venn diagram touches a face at most once. Thus a curve in any
Venn diagram can not have three or more crosscuts, because that curve would touch
the outer face (and the innermost face) at least twice. Now suppose that some curve C
in an n-Venn diagram has two crosscuts. Then those crosscuts must start at the same
segment of C on the outer face, and finish at the same segment of C on the innermost
face. Thus, curve C contains exactly 2(n − 1) intersections with the other curves. If
the Venn diagram is symmetric, then there must be a total of n(n − 1) intersection
points. On the other hand, a simple symmetric Venn diagram has exactly 2n − 2
intersection points. Since n(n− 1) = 2n − 2 has a solution for n = 1, 2, 3, but not for
n > 3, the lemma is proved. ut

A clump in a Venn diagram is a collection of regions that is bounded by a simple
closed path of curve segments. The size of a clump is the number of regions that
it contains. Aside from the innermost face and the outermost face, a rotationally
symmetric n-Venn diagram can be partitioned into n congruent clumps, each of size
(2n − 2)/n; in this case we call the clump a cluster — it is like a fundamental region
for the rotation, but omitting the parts of the fundamental region corresponding to
the full set and to the empty set. Referring again to Figure 1(a), a cluster has been
shaded, and this cluster is redrawn in Figure 1(b). Notice that the cluster of Figure
1(b) has a central shaded section which has a reflective symmetry about the crosscut.
The essential aspects of this reflective symmetry are embodied in the definition of
crosscut symmetry, given below.

Definition 1. Given a rotationally symmetric n-Venn diagram, we label the curves
as C1, C2, . . . , Cn according to the clockwise order in which they touch the unbounded
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(a) (b)

Fig. 1: (a) A simple rotationally symmetric monotone 7-Venn diagram with a clus-
ter colored (shaded). (b) The cylindrical representation of a cluster of the diagram,
showing the reflective aspect of crosscut symmetry.

outermost face. Assume that we have a cluster with the property that every curve
intersects the cluster in a segment and that cluster Sk contains the crosscut for curve
Ck. Let Li,k be the list of curves that we encounter as we follow Ci in the cluster
Sk in clockwise order, and let `i,k denote the length of Li,k. A rotationally symmetric
n-Venn diagram has crosscut symmetry if it can be partitioned into n such clusters
S1, S2, . . . , Sn in such a way that for every cluster Sk, for any i 6= k, the list Li,k is
palindromic, that is, for 1 ≤ j ≤ `i,k, we have Li,k[j] = Li,k[`i,k − j + 1].

Figure 1(a) shows a simple rotationally symmetric 7-Venn diagram which also
has crosscut symmetry. In the Survey of Venn diagrams it is known as M4 [12].
There is only one other simple 7-Venn diagram with crosscut symmetry; it is dubbed
“Hamilton” by Edwards [3]. Hamilton also has “polar symmetry” but is not used
here because it might cause confusion with the crosscut symmetry. Cluster S1 of the
diagram is shown in Figure 1(b) where a segment of C1 is the crosscut. The list of
crossing curves for each curve in the cluster S1 is shown below.

L1,1 = [C2, C5, C4, C6, C3, C7]

L2,1 = [C3, C1, C3]

L3,1 = [C2, C4, C6, C5, C1, C5, C6, C4, C2]

L4,1 = [C5, C3, C5, C1, C5, C3, C5]

L5,1 = [C4, C6, C3, C6, C4, C1, C4, C6, C3, C6, C4]

L6,1 = [C7, C5, C3, C5, C1, C5, C3, C5, C7]

L7,1 = [C6, C1, C6]

Imagine a ray issuing at some point in the innermost region of an n-Venn diagram
V and sweeping the surface of the diagram in a clockwise order. If V is simple and
monotone, we can always deform the curves of V continuously such that at any
moment the ray cuts each curve exactly once and no two intersection points of V lie
on the ray at the same time [1]. Let π be the vector of curve labels along the ray where
π(1) is the outermost curve and π(n) is the innermost curve. At each intersection point
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of V a pair of adjacent curves cross. Therefore, we can represent the whole diagram
using a sequence of length 2n−2 of curve crossings, where a crossing of curves π(i) and
π(i+1), for 1 ≤ i < n, is indicated by an entry of value i in the crossing sequence. See
[11] for more details on this representation of simple monotone Venn diagrams. For a
simple rotationally symmetric n-Venn diagram, the first (2n − 2)/n elements of the
crossing sequence are enough to represent the entire diagram; the remainder of the
crossing sequence is formed by n− 1 concatenations of this sequence. For example, if
the ”ray” initially starts a small distance from the left boundary of the cluster shown
in Figure 1(a), then the first 18 = (27 − 2)/7 elements of the crossing sequence could
be the following list; we write “could” here since crossings can sometimes occur in
different orders and still represent the same diagram (e.g., taking ρ = 3, 1, 5, 2, 4 gives
the same diagram); see the remark below.

1, 3, 2, 5, 4︸ ︷︷ ︸
ρ

, 3, 2, 3, 4︸ ︷︷ ︸
α

, 6, 5, 4, 3, 2︸ ︷︷ ︸
δ

, 5, 4, 3, 4︸ ︷︷ ︸
αr+

We encourage the reader to verify that this sequence is correct by referring to the
crossing numbers shown to the right of the intersections in Figure 1(b).

Remark 1. If j, k is an adjacent pair in a crossing sequence C and |j − k| > 1, then
the sequence C ′ obtained by replacing the pair j, k with the pair k, j is also a crossing
sequence of the same diagram.

Theorem 1. A simple monotone rotationally symmetric n-Venn diagram is crosscut
symmetric if and only if it can be represented by a crossing sequence of the form
ρ, α, δ, αr+ where

– ρ is 1, 3, 2, 5, 4, . . . , n− 2, n− 3.
– δ is n− 1, n− 2, . . . , 3, 2.
– α and αr+ are two sequences of length (2n−1−(n−1)2)/n such that αr+ is obtained

by reversing α and adding 1 to each element; that is, αr+[i] = α[|α| − i+ 1].

Proof. Let V be a simple monotone rotationally symmetric n-Venn diagram with
crosscut symmetry. Assume that the curves of V are labeled C1, C2, . . . , Cn according
to their clockwise order of touching the outermost region. Consider a cluster of V
where a segment of C1 forms the crosscut. Each curve of the diagram touches the
outermost and innermost region exactly once. Therefore, C1 only intersects Cn−1 at
some point u on the left border of the cluster before intersecting the crosscut. Since
the diagram is crosscut symmetric, Ln,1 = [Cn−1, 1, Cn−1] and so Cn must intersect
Cn−1 at some point v on the right border of the cluster immediately below C1. Because
of the rotational symmetry of V , the point v is the image of some point s on the left
border under the rotation of 2π/n about the center of the diagram. At the point s the
curves Cn−1 and Cn−2 intersect. Again, because of the crosscut symmetry, Ln−1,1 =
[Cn, Cn−2, . . . , Cn−2, Cn], and so there is a corresponding point t on the right border
where Cn−1 and Cn−2 intersect. Continuing in this way, we can see that the the left
and right border of a crosscut symmetric n-Venn diagram must have the “zig-zag”
shape as illustrated in Figure 2.
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Fig. 2: A cluster of a crosscut symmetric simple monotone n-Venn diagram (cylindrical
representation).

Consider two rays issuing from the center of the diagram which cut all the curves
immediately before the left zig-zag border and immediately after the right zig-zag
border of the cluster. Let π and σ be the curve vectors along the rays as we move the
rays in opposite directions towards the crosscut. We prove by induction that as long
as the two rays do not intersect the crosscut, at each moment σ is a cyclic shift of
π one element to right; therefore if π(i) and π(i + 1) intersect on the left side, then
σ(i+ 1) and σ(i+ 2) must also intersect on the right side. Initially π and σ are

[Cn−1, Cn, Cn−3, Cn−2, . . . , C2, C3, C1] and [C1, Cn−1, Cn, Cn−3, . . . , C5, C2, C3]

respectively. According to the “zig-zag” shape of the borders, after n− 2 crossings on
the borders, π and σ will be

[Cn, Cn−2, Cn−1, Cn−4, . . . , C4, C2, C1] and [C1, Cn, Cn−2, Cn−1, . . . , C3, C4, C2].

Clearly, the n − 2 crossings on the left border can be represented by the crossing
sequence ρ = 1, 3, 2, 5, 4, . . . , n− 2, n− 3.

Now suppose for any of the previous k intersection points, σ is always a cyclic
rotation of π one element to the right and suppose the next crossing occurs between
π(i) and π(i + 1). Since π(i) = σ(i + 1) and π(i + 1) = σ(i + 2) the next crossing
on the right side of crosscut must occur between σ(i+ 1) and σ(i+ 2), for otherwise
the diagram would not be crosscut symmetric. Thus, σ remains a cyclic shift of π by
one element to the right after the crossing. Therefore, by induction each crossing of
π(i) and π(i+ 1) corresponds to a crossing of σ(i+ 1) and σ(i+ 2). Let α represent
the sequence of crossings that follow the first n − 2 crossings that occur on the left
border. Reversing the crossings of the right side of the crosscut, the entire crossing
sequence of the cluster is

1, 3, 2, 5, 4, . . . , n− 2, n− 3, α, n− 1, n− 2, . . . , 2, 1, αr+, n− 2, n− 1, . . . , 5, 6, 3, 4, 2,

where αr+[i] = α[|α|−i+1]. Removing the n−1 elements representing the intersection
points of the right border, we will get the required crossing sequence ρ, α, δ, αr+ of
the diagram.
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To prove the converse, suppose we are given a rotationally symmetric n-Venn
diagram V with the crossing sequence ρ, α, δ, αr+ as specified in the statement of the
theorem. Then the crossing sequence of one cluster of V is ρ, α, δ, αr+, ρ, n− 1 where
ρ = [1, 3, 2, 5, 4, . . . , n − 2, n − 3], and δ = [n − 1, n − 2, . . . , 3, 2]. The ρ sequence
indicates that the cluster has the “zig-zag”-shaped borders. Therefore, by Remark 1,
the crossing sequence of the cluster can be transformed into an equivalent crossing
sequence

A = [1, 3, 2, . . . , n−2, n−3, α, n−1, n−2, . . . , 3, 2, 1, αr+, n− 2, n− 3, . . . , 3, 4, 2].

Thus there is a crosscut in the cluster and

A [|A| − i+ 1] = A[i] + 1 1 ≤ i ≤ |A| − n+ 1

2
,

where |A| is the length of A. Using similar reasoning to the first part of the proof, it can
be shown that at each pair of crossing points corresponding to A[i] and A[|A|− i+1],
the same pair of curves intersect. So, for each curve C in the cluster as we move the
rays along C in opposite directions, we encounter the same curves that intersect C
and therefore the diagram is crosscut symmetric. ut

Given a cluster Si of a crosscut symmetric n-Venn diagram where a segment of Ci
is the crosscut, there are the same number of regions on both sides of the crosscut.
Furthermore, let r be a k-region in Si that lies in the exterior of Ci and interior to
the curves in some set K; then there is a corresponding (k + 1)-set region r′ that is
in the interior of Ci and also interior to the curves in K.

3 Simple symmetric 11-Venn diagrams

By Theorem 1, having the subsequence α of a crossing sequence we can construct
the corresponding simple monotone crosscut symmetric n-Venn diagram. Therefore,
for small values of prime n, an exhaustive search of α sequences may give us possible
crosscut symmetric n-Venn diagrams. For example, for n = 3 and n = 5, α is empty
and the only possible cases are the three circles Venn diagram and Grünbaum 5-
ellipses. For n = 7, the valid cases of α are [3, 2, 4, 3] and [3, 2, 3, 4]. The search
algorithm is of the backtracking variety; for each possible case of α, we construct the
crossing sequence S = ρ, α, δ, αr+ checking along the way whether it currently satisfies
the Venn diagram constraints, and then doing a final check of whether S represents
a valid rotationally symmetric Venn diagram. Using this algorithm for n = 11, we
found more than 200, 000 simple monotone symmetric Venn diagrams which settles
a long-standing open problem in this area.

Figure 3 shows the first simple symmetric 11-Venn diagram discovered. It was
discovered in March of 2012, so following Anthony Edwards’ tradition of naming
symmetric diagrams [3], we name it Newroz which means “the new day” or “the
new sun” and refers to the first days of spring in Kurdish/Persian culture; for English
speakers, Newroz sounds also like “new rose”, perhaps also an apt description. Further
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Fig. 3: Newroz, the first simple symmetric 11-Venn diagram.

illustrations of our 11-Venn diagrams may be found at http://webhome.cs.uvic.ca/

~ruskey/Publications/Venn11/Venn11.html. Below is the α sequence for Newroz.

[323434543234345434545654565676543254346545

676787656543457654658765457656876546576567]

Fig. 4: A blow-up of part of Newroz.

http://webhome.cs.uvic.ca/~ruskey/Publications/Venn11/Venn11.html
http://webhome.cs.uvic.ca/~ruskey/Publications/Venn11/Venn11.html
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Fig. 5: A cluster of Newroz, the first simple symmetric 11-Venn diagram.

4 Final Thoughts

Define a symmetric Venn diagram to have dihedral symmetry if it is left invariant
by flipping it over (and possibly rotating it after the flip). It is interesting how close
our diagram is to having dihedral symmetry. By removing n(n− 1)/2 = 5 edges, the
remaining diagram can be drawn with dihedral symmetry (Figure 6(a)); the edges
to be removed are the diagonal edges that intersect a vertical bisector of the figure.
By slightly modifying those removed edges we can get a Venn diagram with dihedral
symmetry (Figure 6(b)). However, in the diagram of Figure 6(b) there are curves that
intersect at infinitely many points, and there are exactly n(n−3)/2 = 4 points where
3 curves meet.

Conjecture 1. There is no simple Venn diagram with dihedral symmetry if n > 3.

It is natural to wonder whether our method can be used to find a simple symmetric
13-Venn diagram. So far our efforts have failed. One natural approach is to try to
exploit further symmetries of the diagram. In the past, attention has focused on what
is known as polar symmetry — in the cylindrical representation, this means that the
diagram is not only rotationally symmetric but that it is also symmetric by reflection
about a horizontal plane, followed by a rotation; an equivalent definition, which we
use below is that there is a axis of rotation through the equator that leaves the
diagram fixed. In the past polar symmetry did not help in finding 11-Venn diagrams
(in fact, no polar symmetric Venn diagrams are yet known), but it is natural to wonder
whether it might be fruitful to search for diagrams that are both polar symmetric
and crosscut symmetric. However, the theorem proven below proves that there are no
such diagrams for primes larger than 7.
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Fig. 6: (a) Part of two adjacent clusters of Newroz with the crosscut drawn vertically
on the left and on the right. The zig-zag starts at the diagonal in the NW corner,
and exits at the diagonal in the SE corner. (b) A slightly modified version, showing
dihedral symmetry.
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Fig. 7: Newroz drawn with the crosscuts drawn along rays emanating from the center
of the diagram, and with as much dihedral symmetry as possible.
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Of the four regions incident to an intersection point in a simple Venn diagram,
a pair of non-adjacent regions are in the interior of the same number of curves and
the number of containing curves of the other two differs by two. Define a k-point in
a simple monotone Venn diagram to be an intersection point that is incident to two
k-regions (and thus also one (k − 1)-region and one (k + 1)-region).

Lemma 2. Given a cluster of a simple symmetric monotone n-Venn diagram which
also has crosscut symmetry, the number of k-points on the left side of the crosscut,
for 1 ≤ k < n is

1

n

((
n− 1

k

)
+ (−1)k+1

)
.

Proof. Let Rk denote the number of k-regions on the left side of the crosscut. There is
a one-to-one correspondence between the k-regions on the left side and (k+ 1)-region
on the right side of the crosscut and we know that the total number of k-regions in
the cluster is

(
n
k

)
/n. Therefore, we can compute the number of k-regions on the left

side of the crosscut from the following recursion.

Rk =

{
1, if k = 1(
n
k

)
/n−Rk−1, if 1 < k < n− 1.

(1)

Unfolding the recurrence (1), we have nRk =
∑

0≤j≤k−1(−1)j
(
n
k−j

)
=
(
n−1
k

)
+(−1)k+1.

Every k-point in a simple monotone Venn diagram indicates the ending of one k-region
and starting of another one. Therefore, we have the same number of k-points and k-
regions on the left side of the crosscut, so both of these are counted by Rk. ut

Theorem 2. There is no monotone simple symmetric n-Venn diagram with crosscut
and polar symmetry for n > 7.

Proof. Let V be a monotone simple symmetric n-Venn diagram which has been drawn
in the cylindrical representation with both polar and crosscut symmetry, and let S be
a cluster of V with crosscut C. Since the diagram is polar symmetric, S remains fixed
under a rotation of π radians about some axis through the equator. Under the polar
symmetry action, a crosscut must map to a crosscut, and since there are n crosscuts
and n is odd, one crosscut must map to itself, and so one endpoint of this axis can
be taken to be the central point, call it x, of some crosscut (the other endpoint of the
axis will then be midway between two crosscuts).

Now, consider a horizontal line ` that is the equator (and thus must include x).
Let m = (n − 1)/2. The line ` cuts every m-region on the left side of C and every
(m + 1)-region on the right side of the crosscut. Because of the crosscut symmetry
of V , each (m + 1)-region on the equator (and so in the interior of C) corresponds
to the image of some m-region on the equator (and so in the exterior of C) with
the same number of bounding edges. Therefore, for V to be polar-symmetric, every
m-region on the left side of the crosscut must be symmetric under a flip about the
horizontal line `, and thus each such region must have an even number of bounding
edges. The number of bounding edges can not be 2, because otherwise it is not a Venn
diagram. Thus a m-region on ` must contain at least one (m− 1)-point. One of those
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(m− 1)-points might lie on C and thus not be counted by Rm−1, but all other points
are counted and so we must have Rm ≤ Rm−1 + 1. However,

Rm −Rm−1 =
1

n

((
2m− 2

m

)
−
(

2m− 2

m− 1

)
+ 2(−1)m+1

)
=

1

n
(cm−1 + 2(−1)m+1),

where cm is a Catalan number. An easy calculation then shows that Rm ≤ Rm−1 + 1
only for the primes n ∈ {2, 3, 5, 7}. ut
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