
Chapter 7

DeBruijn Cycles and Relatives

Dominoes is a simple game, enjoyed by children and adults alike. There are 28 domino
pieces, each of which consists of an unordered pair of numbers taken from the set {0, 1, 2, 3, 4, 5, 6}
and printed or stamped as dots on a 1-by-2 piece of wood or plastic. Each of two players
takes turns alternately placing dominoes, subject to the restriction that the new domino
must abut a domino with the same number (there are various other rules that we ignore). A
sample game which used all pieces is shown in Figure 7.1. As is customary, dominoes with
identical numbers are placed perpendicular to the other dominoes. Now imagine a solitary
player who simply wants to create a configuration like that shown in the figure. We consider
a couple of questions. First, does it matter which pieces have already been placed? Can you
blindly place the pieces and still know that a successful completion is assured? Secondly,
note that we have created a kind of Gray code, in the sense that successive dominoes satisfy
a natural closeness condition, but trying to model the problem as one of finding a Hamilton
path in a graph with 28 vertices is not as straightforward as you might imagine. Give it a
try!

Here’s a more serious topic. The following circular bitstring has a rather curious prop-
erty.

00011101 (7.1)

Consider the set of all of its contiguous substrings of length three. There are eight such
substrings and they are all distinct: 000, 001, 011, 111, 110, 101, 010, 100. In other words,
they are all 8 bitstrings of length three. In general it is natural to wonder whether there is
a circular k-ary string of length kn with the property that all of its kn length n contiguous
substrings are distinct. Such circular strings do indeed exist and have come to be known
as De Bruijn Cycles. De Bruijn cycles have found use in coding and communications, as
pseudo-random number generators, in the theory of numbers, in digital fault testing, in the

q

q

q

q

q

q

q

q

q

q

q

q

qq q

qq q

q

q

q

q

q

q

q

q

q

q

q

q
q

q

q

q

q
q
qq q

qq q

q qq

q qq

q
q
q

q
q
q

q q
q

q

q

q

q

q

q

q
q q

q

q

q

q
q

q

q

q

q
q
q

q

q

q

q
q
q

q
q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q q q

q q q

q qq

q qq

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q
q
q
q

q
q
q

q
q
q

q
q
q

q

q

q

q

q

q

q

q
q

q

q

q
qq q

qq q

Figure 7.1: Example (maximal) domino game.

207

208 CHAPTER 7. DEBRUIJN CYCLES AND RELATIVES

design of Sanskrit memory wheels1, and by illusionists in mind-reading effects.

What ties these two topics together is that they are more naturally modelled as questions
about Eulerian cycles in graphs rather than about Hamilton paths in graphs. One of our
main aims in this chapter is to show that De Bruijn cycles always exist, and how to generate
them quickly. Along the way we encounter other important combinatorial objects, such as
necklaces, Lyndon words, and primitive polynomials over finite fields.

7.1 Eulerian Cycles

Certain combinatorial Gray code questions are more naturally posed as Eulerian cycle
questions rather than as Hamiltonian cycle questions. Recall that an Eulerian cycle in a
(multi)graph is a cycle that includes every edge exactly once. There is a simple charac-
terization of Eulerian graphs, namely as given in Lemma 2.6: a connected (multi)graph is
Eulerian if and only if every vertex has even degree.

Now back to the domino problem. Consider the complete graph K7 with vertices labelled
0, 1, 2, 3, 4, 5, 6 and with the self-loops {i, i} added to each vertex i. There are 28 edges in
this graph and each edge corresponds to a domino. An Eulerian cycle corresponds to a
maximal domino game like that shown in Figure 7.1. Eulerian cycles clearly exist since
each vertex has even degree 8.

7.1.1 Generating an Eulerian cycle

Let G be an directed Eulerian multigraph with n vertices. In this section we develop an
algorithm that will generate an Eulerian cycle in in G. Along the way we will discover a nice
formula for the number of Eulerian cycles and a CAT algorithm for generating all Eulerian
cycles of G.

If G is a directed multigraph then G is the directed multigraph obtained by reversing
the directions of the edges of G (i.e., for each edge (u, v) of G, there is a corresponding edge
(v, u) in G.

There is a simple algorithm for finding an Eulerian cycle in G given an in-tree rooted at
some vertex r. We simply start at r and successively pick edges subject to the restriction
that an edge of T is not used unless there is no other choice. A simple implementation of
this rule is contained in Algorithm 7.1, and an example of its use is to be found in Figure
7.2.

At step (E1) we find a spanning out-tree T of G that is rooted at r. In general there
may be several spanning out-trees rooted at r and it doesn’t matter which one is used;
depth-first search is a convenient and efficient way to find such a tree. The tree T is a
spanning in-tree of G. We now modify (at line (E2)) the adjacency lists of G so that the
unique edge (u, v) ∈ T on the list for u is at the end of the list. We now say that the
adjacency lists are extreme with respect to T . The remaining lines simply extract edges
from the adjacency lists, destroying the lists in the process.

The running time of this algorithm is O(m) where m is the number of edges in G. Since
G is Eulerian, m ≥ n. The depth-first search at line (E2) runs in time O(n + m). The

1The nonsense Indian word yamátárájabhánasalagám is a mnemonic way of remembering the sequence
(7.1), where an accented vowel represents a 1 and an unaccented vowel represents a 0. This word was used
by medieval Indian poets and musicians as an aid in remembering all possible rythms. (There are 10 bits
because the last two have been wrapped around.)

uvic01, c©Frank Ruskey, 1995–2001

7.1. EULERIAN CYCLES 209

(E1) Use depth-first-search to find a spanning out-tree T of G rooted at r.
(E2) Compute adjacency lists adj of G that are extreme with respect to T .
(E3) u := r;
(E4) while adj[u] 6= null do
(E5) v := adj[u].vert; adj[u] := adj[u].next;
(E6) Output((u, v));
(E7) u := v;

Algorithm 7.1: Algorithm to find an Eulerian cycle in a directed multigraph.

b

a

r

d

c

d

c

b

a

r

d

a c

c

b

d

r

a

Figure 7.2: Example of finding an Euler cycle in a directed multigraph. (a) A directed

multigraph G, with spanning in-tree found by depth-first search of G shown in bold, and (b) extreme

adjacency lists with respect to T , with edges of T thicker. The cycle produced by this example is

r, d, a, b, c, d, c, a, r.

uvic01, c©Frank Ruskey, 1995–2001

210 CHAPTER 7. DEBRUIJN CYCLES AND RELATIVES

computation of G takes time O(m) the remaining computation (line (E3-E6)) takes time
O(m) since the body of the while loop at line (E3) is executed exactly m times.

Theorem 7.1 Given a directed Eulerian multigraph G, Algorithm 7.1 outputs a list of edges
along an Eulerian cycle of G.

Proof: Since G is Eulerian, the path P produced by the algorithm must end at r. Imagine
that there is some edge (v,w) that is not in P . Since the algorithm terminated it must
be the case that v 6= r. Clearly, any edge on the adjacency list for v that follows (v,w)
must also not be in P . Thus, because the edge lists are extreme with respect to T , we may
assume that (v,w) is in T . Since G − P is balanced, there is an edge (u, v) also not in P ,
which again we can take to be in T . Continuing in this manner we obtain a path of edges
in (G−P)∩ T that terminates at r. But then, since G−P is balanced, it must contain an
edge (r, q), contrary to the terminating condition of the algorithm. ✷

How many Eulerian does a connected, balanced multigraph G have? In answering this
question we regard an Eulerian cycle as being a circular list of edges; the edge that starts
the list is immaterial. The answer is provided by our algorithm. Clearly, different in-trees
T produce different cycles, as do different adjacency lists that are extreme with respect to
T . A graph G has τ(G) different spanning in-trees rooted at a given vertex r and there are
(d+(v) − 1)! ways of arranging the adjacency list of v so that it is extreme with respect to
T . Thus it is plausible that the number of Eulerian cycles in G is

τ(G)
∏

v∈V

(d−(v) − 1)!. (7.2)

To prove (7.2) we must show that we can recover the adjacency lists and tree T from an
Eulerian cycle C. Fix an edge (r, s) to be the first on the cycle. Define the adjacency list
for vertex v to simply be the edges of the form (v,w) in the order that they are encountered
on C. With these adjacency lists lines (E3-E8) will produce the cycle C. To finish the proof
we need to show that the the collection of edges

S = {(v, v′) ∈ E | v 6= r and (v, v′) is the last occurence of v on C}

is an in-tree rooted at r. The set S contains n − 1 edges; we must show that it forms no
cycles. Assume to the contrary that such a cycle X exists and let (y, z) be the first of its
edges that occur on C, and let (x, y) be the previous edge on X. Unless y = r, there is some
edge (y, z′) that follows (x, y) on C, in contradiction to the way (y, z) was chosen. But we
cannot have y = r either since then (y, z) = (r, z) would be in S.

How fast can we generate all Eulerian cycles in a graph? We need to generate per-
mutations of edges on adjacency lists. There are many CAT algorithms for generating
permutations (e.g., Algorithms ???, ???, and ???). We also need to generate spanning trees
of a graph. This topic is taken up in Chapter ???. There are CAT algorithms for generating
spanning trees of undirected graphs, but what about spanning in-trees of directed graphs?
!!! Is this a simple reduction or a research problem ???

7.1.2 An Eulerian Cycle in the Directed n-cube

Given the central role played by hypercubes in the previous chapters, it is fitting that the
next problem is one that can be modeled on the n-cube. We must admit, however, that it is

uvic01, c©Frank Ruskey, 1995–2001

7.1. EULERIAN CYCLES 211

a rather distant relative of De Bruijn cycles. The solution of the following problem of Bate
and Miller [32] is useful in circuit testing. Generate a cyclic sequence of n2n bitstrings of
length n with the following three properties: (a) Each distinct bitstring must appear exactly
n times; (b) each bitstring must differ by exactly one bit from the previous bitstring; (c)
each possible pair of successive bitstrings must appear exactly once. An example of such a
sequence for n = 3 is shown below.

000, 001, 011, 001, 101, 111, 101, 011, 000, 100, 110, 110,

101, 100, 000, 010, 110, 111, 011, 111, 110, 010, 011, 010,

The three occurences of 011 are underlined. Note that the three bitstrings which follow
them are all distinct. Let ~Qn be the directed n-cube; every edge of the n-cube Qn is replaced
by two directed edges, one in each direction. The following theorem is obviously true since
any digraph for which the in-degree of each vertex is equal to its out-degree is Eulerian.
Our interest in this theorem lies in its proof, which shows an explict construction of the
Eulerian cycle without building the graph.

Theorem 7.2 There is an Eulerian cycle in the directed n-cube ~Qn for all n > 0.

Proof: We argue by induction on n. The cycle will be expressed as a list of n2n + 1
vertices, starting and ending at 0n. The list for n = 1 is 0, 1, 0.

Let L denote the list of bitstrings of the Eulerian cycle for n − 1. Produce from this a
list L′ obtained by doing the following steps in order.

1. Append a 0 to each bitstring of L.

2. Replace the first occurence of a non-zero bitstring X0 by the 3 bitstrings X0,X1,X0.

3. Concatenate a second copy of L with a 1 appended to each bitstring.

4. Concatenate to the list a final bitstring of 0’s.

It is easy to visualize what this algorithm is doing if ~Qn is recursively thought of as two
copies E0 and E1 of ~Qn−1, where one copy contains those vertices that end with a 0 and
the other with those that end with a 1. The only other edges are the 2-cycles of the form
X0,X1. It is these 2-cycles that get added to the Eulerian cycle by step 2; call the result
E′

0. They are added the first time X is encountered in E0, except if X is 0. The 2-cycle
00,01 is used to join E′

0 and E1. ✷

For n = 2 the cycle produced is

00, 10, 11, 10, 00, 01, 11, 01, 00.

The table below shows the Eulerian cycle for n = 3.

uvic01, c©Frank Ruskey, 1995–2001

212 CHAPTER 7. DEBRUIJN CYCLES AND RELATIVES

n = 2 E′
00 E11

00 000 001
10 100,101,100 101
11 110,111,110 111
10 100 101
00 000 001
01 010,011,010 011
11 110 111
01 010 011
00 000 001

000
How can we develop and efficient algorithm based on this proof? The main difficulty

comes from deciding which is the first occurence of a non-zero string. A bitstring b is
uniquely identified in the list by the bit that changes, call it c, in obtaining the successor
of b, call it b′. If, given b and c, we can specify c′, the bit that changes in obtaining
the successor of b′, then we will be able to produce the entire list. Initially b = 0 = 0n

and c = 1; these can also be used for the terminating conditions. Below we give rules for
obtaining c′ from b and c. These rules will be justified in the paragraphs to follow. In these
rules x denotes a single bit (a “don’t care”), X is a generic bitstring, and 0 is a string of
0’s.

A. If c = n and b = X0 then c′ = 1 if X = 0 and c′ = n if X 6= 0.

B. If c = n and b = Xx1 then c′ = 1 if X = 0 and c′ = n − 1 if X 6= 0.

C. If c = n − 1 and b = 01x then c′ = n.

D. If c = n − k (k ≥ 1) and b has more than k trailing 0’s, then c′ = n.

E. If none of the rules A-D above apply, then recursively apply them to the string con-
sisting of the first n − 1 bits.

The last transition is from 0n−11 to 0n. Thus when the sequence E′
0 or E1 is completed,

the next transition is in position n. So if b = 01x and c = n, then c′ should be n. This
explains rule C.

Whenever bit n changes from 0 to 1 (b = X0 and c = n), then it changes back to 0
(c′ = n) unless X = 0. If X = 0, then a new sequence on n−1 bits is starting and c′ should
be 1. This explains rule A.

In expanding E0 to E′
0 and a bitstring is generated for the first time, c′ should be n.

This happens whenever bit n−1 is about to change from a 0 to a 1 (b = X00 and c = n−1),
or whenever bit n− 1 is a 0 and a pattern on the first n− 2 bits is about to appear for the
first time. Recursively, this gives rise to the patterns b = X000 and c = n − 2, and more
generally to b = X0k+1 and c = n − k. This explains rule D.

We now consider the case in which bit n changes from 1 to 0. This happens at the
penultimate bitstring (i.e., when b = 0n−11 and c = n). It also occurs when finishing up
a two cycle; that is, when bit n has changed from 0 to 1 and is now immediately changing
from 1 to 0. The sequence on n − 1 bits must now be resumed. This implies that rule D
was used, followed by rule A, and that the following bitstrings have just been generated.

uvic01, c©Frank Ruskey, 1995–2001

7.2. NECKLACES 213

0 0 0 1

1 0

0 0

1 1

1 0

0 0

0 1

0 1

1 0

1 1

1 1

0 1

1 0

1 1

0 0

Figure 7.3: The six two-color necklaces with 4 beads. The necklace strings are shown in
bold. Each equivalence class of strings under rotation is boxed.

b c

X0 0 . . . 0 0 n − k
X1 0 . . . 0 0 n
X1 0 . . . 0 1 n current
X1 0 . . . 0

︸ ︷︷ ︸

k−1

0 ? b′, c′

The interrupted sequence on n − 1 bits must now be resumed. The two lines where
c = n may be ignored, as may bit n. The first bitstring of the four should determin c′. This
explains rule B.

Rules A-D cover all cases where c = n or c′ = n. If bit n is not involved, then we are
generating the Eulerian cycle in ~Qn−1. This explains rule E.

A straighforward implemenation of these rules overcomes the exponential space obstacle,
reducing it to O(n). Time is also clearly O(n) per bitstring produced. Unfortunately, the
rules don’t lend themselves to a CAT algorithm since about n22n−1 applications of the rules
(including the recursive applications) are required to generate the Eulerian cycle.

However, a circuit may be designed, based on a refinement of these rules, which produces
each bitstring in constant time from its predecessor, by operating in parallel, a similar circuit
used for each position.

7.2 Necklaces

Mathematically, a necklace is usually defined as an equivalence class of strings under rota-
tion. This definition is not exactly in accord with our intuition about what constitutes a
real necklace, since we expect to be able to pick up a necklace and turn it over. However, we
stick with the mathematical tradition and thus regard 001101 as being a different necklace
than 001011, even though one may be obtained from the other by scanning backwards (and
then rotating). Our principle goal in this section is to develop an efficient algorithm for
generating necklaces.

Figure 7.3 shows the six two-color necklaces with 4 beads.

Recall that Σk = {0, 1, . . . , k−1}, that Σn
k is the set of all k-ary strings of length n, that

uvic01, c©Frank Ruskey, 1995–2001

214 CHAPTER 7. DEBRUIJN CYCLES AND RELATIVES

Σ∗
k is the set of all k-ary strings, and that Σ+

k = Σ∗
k \ {ε}. Define an equivalence relation ∼

on Σ∗
k by α ∼ β if and only if there exist u, v ∈ Σ+

k such that α = uv and β = vu. Instead
of defining a necklace as an equivalence class we choose to define it as the lexicographically
least representative of some equivalences class of the relation ∼. The set of all necklaces is
denoted N and Nk(n) denotes the set of all necklaces of length n over a k-ary alphabet.

Nk(n)
def
= {α ∈ Σn

k | α ≤ β for all β ∼ α} (7.3)

For example N2(4) = {0000, 0001, 0011, 0101, 0111, 1111}. The cardinality of Nk(n) is
denoted Nk(n).

Recall that a string α is periodic if α = βk where β is non-empty and k > 0. If β is
aperiodic, then it is called the periodic reduction of α. An aperiodic necklace is called a
Lyndon word. The set of all Lyndon words is denoted L and Lk(n) denotes the set of all
k-ary Lyndon words of length n.

Lk(n)
def
= {α ∈ Nk(n) | α is aperiodic}

For example, L2(4) = {0001, 0011, 0111}. The cardinality of Lk(n) is denoted Lk(n).
A word α is called a pre-necklace if it is the prefix of some necklace. The set of all

pre-necklaces is denoted P and the set of all k-ary pre-necklaces of length n is denoted
Pk(n).

Pk(n)
def
= {α ∈ Σn

k | αβ ∈ N(n + m,k) for some m ≥ 0 and β ∈ Σm
k }

For example P2(4) = N2(4)∪{0010, 0110}. The cardinality of Pk(n) is denoted Pk(n). We
also define Wk(n) to be the number of pre-necklaces of length at most n. These numbers
will prove useful in analyzing the algorithms developed below. We define

Wk(n)
def
= 1 +

n∑

i=1

Pk(i). (7.4)

Let α = a0a1 · · · an−1 be a string that can be written α = xy = yx where neither of x
or y is empty. In other words, α is equal to one of its non-trivial circular shifts. Suppose
x = a0a1 · · · am−1. Then xy = yx implies the equation ai = ai+m, where index addition is
taken modulo n. Iterating the equation we obtain

ai = ai+jm for all 0 ≤ i, j < n.

By Lemma 2.2 on page 16, jm (mod n) for 0 ≤ j < n gives us the multiples of m modulo
n, so that

{jm (mod n) : j = 0, 1, . . .} = {0, d, 2d, . . . , n − d},

where d = gcd(m,n). We have now proven the following lemma.

Lemma 7.1 If α = xy = yx then

α = (a0a1 · · · ad−1)
n/d, (7.5)

where n = |α| and d = gcd(|x|, n).

Note the following corollary.

uvic01, c©Frank Ruskey, 1995–2001

7.2. NECKLACES 215

Corollary 7.1 If α = xy = yx with x 6= ε, y 6= ε, then α is periodic.

We now count the objects under consideration. In the expressions below φ is the Euler
totient function and µ is the Möbius function .

Theorem 7.3 The following formulae are valid for all n ≥ 1, k ≥ 1:

Lk(n) =
1

n

∑

d\n

µ
(n

d

)

kd, (7.6)

Nk(n) =
1

n

n∑

j=1

kgcd(j,n) =
1

n

∑

d\n

φ(d)kn/d, (7.7)

Pk(n) =

n∑

i=1

Lk(i). (7.8)

Proof: Let Ak(n) be the number of k-ary aperiodic strings of length n. Since every string
can be expressed as an integral power of some aperiodic string, it follows that

kn =
∑

d\n

Ak(d). (7.9)

Now apply Möbius inversion (2.11) to obtain

Ak(n) =
∑

d\n

µ(n/d)kd.

Since every circular shift of an aperiodic string is distinct, Ak(n) = n · Lk(n), thereby
proving (7.6). In the special case where p is a prime (7.6) or (7.7) imply “Fermat’s Little
Theorem”: kp−1 ≡ 1 (mod p).

To prove (7.7) we use Burnside’s lemma . Necklaces are obtained by having the cyclic
group Cn act on the set of k-ary strings. Let σ denote a left rotation by one position.
Then the group elements are σj for j = 0, 1, . . . , n − 1. We need to determine the number
of strings α for which σj(α) = α. By Lemma 7.1 this can occur only if α = βt where
β ∈ L and |β| = gcd(j, n). The number of such strings α is kgcd(j,n). Thus the number of
equivalence classes is kgcd(j,n) summed over all j = 1, 2, . . . , n (noting that σ0 = σn) divided
by |Cn| = n. The second equality follows from equation (2.10).

Equation (7.8) will be proven later. ✷

It is also worth noting that, since every necklace has the form βt where β ∈ L,

Nk(n) =
∑

d\n

Lk(d). (7.10)

Equation (7.10) can also be used to prove (7.7); see exercise 5.

Below is a table of these numbers for the most important case, k = 2. Note that 2n/n is
sandwiched between L2(n) and N2(n), a property that holds for all values of n, and more
generally, for all k ≥ 2.

uvic01, c©Frank Ruskey, 1995–2001

216 CHAPTER 7. DEBRUIJN CYCLES AND RELATIVES

k = 2, n = 6

000000 N 000110 001101 L 011011 N
000001 L 000111 L 001110 011101
000010 001001 N 001111 L 011110
000011 L 001010 010101 N 011111 L
000100 001011 L 010110 111111 N
000101 L 001100 010111 L

k = 3, n = 4

0000 N 0022 L 0122 L 1111 N
0001 L 0101 N 0202 N 1112 L
0002 L 0102 L 0210 1121
0010 0110 0211 L 1122 L
0011 L 0111 L 0212 L 1212 N
0012 L 0112 L 0220 1221
0020 0120 0221 L 1222 L
0021 L 0121 L 0222 L 2222 N

Figure 7.4: Output of the FKM algorithm (read down columns).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L2(n) 2 1 2 3 6 9 18 30 56 99 186 335 630 1161 2182
⌈2n/n⌉ 2 2 3 4 7 11 19 32 57 103 187 342 631 1171 2185
N2(n) 2 3 4 6 8 14 20 36 60 108 188 352 632 1182 2192
P2(n) 2 3 5 8 14 23 41 71 127 226 412 747 1377 2538 4720
W2(n) 3 6 11 19 33 56 97 168 295 521 933 1680 3057 5595 10315

A simple and elegant algorithm was proposed in Fredricksen and Maiorana [155] and
Fredricksen and Kessler [154] to generate the sets Pk(n) and Nk(n). We will refer to this
algorithm as the FKM algorithm.

For a given n and k, the FKM algorithm generates a list, Pk(n), in lexicographic order,
where as usual we use the same notation for both the list and the set. The list Pk(n) begins
with the string 0n and ends with (k − 1)n. For a given α in Pk(n), the successor of α,
succ(α), is obtained from α = a1a2 · · · an as follows.

Definition 7.1 For α < (k− 1)n, succ(α) = (a1a2 · · · ai−1(ai + 1))ta1 · · · aj , where i is the
largest integer 1 ≤ i ≤ n such that ai < k − 1 and t, j are such that ti + j = n and j < i.

We also define the predecessor function pred, where if succ(α) = β, then pred(β) = α.

It is shown in [155] that the successor function succ sequences through the elements of
Pk(n) in lexicographic order and that succ(α) is a necklace if and only if the i of Definition
7.1 is a divisor of n. We will prove these assertions later in this section.

Figure 7.4 shows the output of the FKM algorithm for n = 6, k = 2, and n = 4, k = 3.
Lyndon words are followed by an “L”; periodic necklaces are followed by a “N” and the
periodic reduction of each necklace is underlined. An iterative implementation is given as
Algorithm 7.2.

For α ∈ Σ∗
k, let lyn(α) be the length of the longest prefix of α that is a Lyndon word.

uvic01, c©Frank Ruskey, 1995–2001

7.2. NECKLACES 217

for j := 0 to n do aj := 0;
PrintIt(1);
i := n;
repeat

ai := ai + 1;
for j := 1 to n − i do a[j + i] := a[j];
PrintIt(i);
i := n;
while ai = k − 1 do i := i − 1;

until i = 0;

Algorithm 7.2: The original iterative FKM Algorithm (note: a[0] = 0.)

This function is well-defined since Σk ⊆ L. More formally,

lyn(a1a2 · · · an)
def
= max{1 ≤ p ≤ n | a1a2 · · · ap ∈ Lk(n)}. (7.11)

The next theorem provides useful characterizations of necklaces and Lyndon words.

Theorem 7.4 The following conditions characterize the sets N and L.

α = xy ∈ N if and only if xy ≤ yx, for all x, y.

α = xy ∈ L if and only if xy < yx, for all non-empty x, y. (7.12)

Proof: [Nk(n)] This is just a restatement of the definition (7.3).
[Lk(n)] Suppose α = xy = yx with xy ≥ yx and x 6= ε and y 6= ε. If xy > yx then

α 6∈ Nk(n), so α 6∈ Lk(n). If xy = yx then by Corollary 7.1, α is periodic, so α 6∈ Lk(n).
Conversely, if α ∈ Nk(n) is periodic, say α = βt with t > 1, then α = xy = yx where x = β
and y = βt−1. ✷

Lemma 7.2 If α ∈ N, then αt ∈ N for t ≥ 1.

Proof: For t > 1, if αt = xy, then yx has the form γαt−1δ where α = δγ. Since α is a
necklace δγ ≤ γδ. Thus

αt = (δγ)t ≤ (γδ)t = γαt−1δ,

and so αt must also be a necklace. ✷

Lemma 7.3 If α ∈ L and α = βγ for some β and γ with γ non-empty, then for any t ≥ 1

(a) αtβ ∈ P, and

(b) αtβ ∈ N if and only if |β| = 0.

Proof: (a) Since α is a necklace, both αt and αt+1 are necklaces by the Lemma 7.2. Thus
αtβ is a pre-necklace and is a necklace if β = ε. If β 6= ε then α = βγ < γβ, since α ∈ L.
Therefore,

αtβ = (βγ)tβ = β(γβ)t > β(βγ)t = βαt,

so that αtβ is not a necklace. ✷

uvic01, c©Frank Ruskey, 1995–2001

218 CHAPTER 7. DEBRUIJN CYCLES AND RELATIVES

Lemma 7.4 Let α = a1a2 · · · an be a string and p = lyn(α). Then α ∈ P if and only if
aj−p = aj for j = p + 1, . . . , n.

Proof: If aj−p = aj for j = p + 1, . . . , n, then α = βtδ for some t ≥ 1 where β =
a1a2 · · · ap ∈ L and δ is a prefix of β. Thus α ∈ P by Lemma 7.3.

Conversely, assume that α ∈ P, and let j be the smallest index j > p such that aj−p 6= aj .
We will derive separate contradictions, depending whether aj−p < aj or aj−p > aj . By the
definition of j, the string α has the form βtδaj · · · an for some t ≥ 1 where β = a1a2 · · · ap

and δ is a proper prefix of β. For some γ, β = δγ where the first symbol of γ is aj−p.

Since α ∈ P there is a string ω such that αω ∈ N. If aj−p < aj , then

βt−1δaj · · · anωδγ < βt−1δγδaj · · · anω,

which implies that αω is not a necklace, a contradiction.

If aj−p < aj then consider the string ρ = βtδaj ; we will use (7.12) to show that ρ ∈ L,
in contradiction to the definition of p = lyn(α). Write ρ = xy with x 6= ε and y 6= ε. We
consider two cases: (a) βt is a prefix of x and (b) x is a prefix of βt.

[Case (a)] Here x = βtu and y = vaj where uv = δ. Since uv is a proper prefix of β
there is a w 6= ε such that β = uvw. Note that the first symbol of w is aj−p. By (7.12),
uvw < vwu < vaj . Thus

xy = uvwβt−1δaj < vajβ
tu = yx.

[Case (b)] Here x = βpu and y = vβqδaj where uv = β and t = 1 + p + q. If u = ε or v = ε,
then we may assume without loss of generality that p ≥ 1 and u = ε. Thus

xy = βpβqδaj < βqδajβ
p = yx,

a contradiction. Thus we may assume that neither of u or v is empty and that β = uv < vu
since β ∈ L. Now if q = 0, then since uv < vu < vaj ,

xy = uvβpδaj < vδajβ
pu = yx,

again a contradiction. The only remaining case is q > 0. But then

xy = βpuvβqδaj = u(vu)p(vu)qvδaj < v(uv)qδajβ
pu = vβqδajβ

pu = yx,

a contradiction. ✷

The following theorem leads to a recursive version of the FKM algorithm. It’s proof is
inherent in the proof of the previous lemma. This theorem is very useful. We are tempted
to call it the “Fundamental Theorem of Necklaces”!

Theorem 7.5 Let α = a1a2 · · · an−1 ∈ Pk(n − 1) and p = lyn(α). The string αb ∈ Pk(n)
if and only if an−p ≤ b ≤ k − 1. Furthermore,

lyn(αb) =

{
p if b = an−p

n if an−p < b ≤ k − 1.

uvic01, c©Frank Ruskey, 1995–2001

7.2. NECKLACES 219

procedure gen(t,p : N);
local j : N;
begin

if t > n then PrintIt(p)
else

a[t] := a[t − p]; gen(t + 1, p);
for j := a[t − p] + 1 to k − 1 do

a[t] := j; gen(t + 1, t);
end {of gen};

Algorithm 7.3: Recursive FKM Algorithm (note: a[0] = 0.)

Algorithm 7.3 is the recursive FKM algorithm. It follows directly from the Theorem
7.5. The initial call is gen(1,1). We assume, as for the iterative FKM algorithm, that
a0 = 0. Various types of objects may be produced, depending on PrintIt(p), as shown in
the table below.

Sequence type PrintIt(p)

Pre-necklaces (Pk(n)) Println(a[1..n])
Lyndon words (Lk(n)) if p = n then Println(a[1..n])
Necklaces (Nk(n)) if n mod p = 0 then Println(a[1..n])
De Bruijn sequence if n mod p = 0 then Print(a[1..p])

The call “Println(a[1..n])” prints the array a[1], a[2], . . . , a[n] on a separate line. Each
time PrintIt is called a new prenecklace is produced. Since the parameter p to PrintIt

is the value of lyn(a[1..n]), a Lyndon word is produced exactly when p = n. By part (b) of
Lemma 7.3 a necklace is produced whenever p divides n. De Bruijn cycles will be discussed
in the following section.

We can now also understand why Algorithm 7.2, the iterative FKM algorithm, is correct.
Consider again the successor function succ. It is clear that the rightmost position i that can
change is the largest index i for which ai < k − 1. We then increment ai. What was not so
clear was how the remainder of the sequence was to be completed in the lexicographically
smallest way. Theorem 7.5 provided the answer.

How fast is the FKM algorithm? We analyze the recursive version; the same conclusions
hold for the iterative version. Call the number of nodes in the computation tree Wk(n).
From the structure of the algorithm, Wk(n) is equal to the number of prenecklaces of length
at most n, as expressed in (7.4).

From the expressions (7.6) and (7.7) we obtain the following bounds.

1

n
(kn − (n − 1)kn/2) ≤ Lk(n) ≤

1

n
kn ≤ Nk(n) ≤

1

n
(kn + (n − 1)kn/2) (7.13)

We have

Pk(n) =

n∑

i=1

Lk(i) ≤

n∑

i=1

1

i
ki, (7.14)

The equality in (7.14) follows because every prenecklace is obtained as a prefix of β∗, where
β is some Lyndon word. Hence

Wk(n) − 1 =
n∑

j=1

Pk(i) ≤
n∑

j=1

j
∑

i=1

1

i
ki

uvic01, c©Frank Ruskey, 1995–2001

220 CHAPTER 7. DEBRUIJN CYCLES AND RELATIVES

111 101

100

001

010

110

000

011

Figure 7.5: The De Bruijn graph for k = 2 and n = 4.

Thus

Wk(n) − 1

Nk(n)
≤

n

kn

n∑

j=1

j
∑

i=1

1

i
ki

In [388] it is shown that this last expression converges to (k/(k − 1))2 as n → ∞. Thus
the asymptotic running time per necklace (or per Lyndon word) is constant; the necklace
Algorithms 7.2 and 7.3 are both CAT.

7.3 De Bruijn Sequences

An example of a De Bruijn sequence was given at the beginning of this chapter. All De
Bruijn sequences arise as Eulerian cycles in a certain graph which we introduce below. The
FKM algorithm can be used to generate the lexicographically least Eulerian cycle.

The De Bruijn graph , Gk(n) has vertex set consisting of all k-ary strings of length n−1;
i.e., it is Σn−1

k . There is a directed edge, labelled b, from d1d2 · · · dn−1 to d2 · · · dn−1b for
each b ∈ Σk. Thus the out-degree of each vertex is k and the number of edges is kn. Figure
7.5 shows G2(4). An Eulerian cycle in Gk(n) is called a De Bruijn cycle. More precisely,
the sequence of kn edge labels is a De Bruijn cycle. A De Bruijn cycle is characterized by
the property that each element of Σn

k occurs exactly once as a substring on the cycle.
There is a very simple modification of the FKM algorithm that will produce a De

Bruijn sequence, as indicated by the appropriate line in the table in the previous section.
The idea is to successively concatenate the reduction of each necklace as it is produced by
the FKM algorithm. Thus we are concatenating all Lyndon words of length divisible by n
in lexicographic order. At first glace it appears most amazing that this algorithm should
work. Let’s first look at the sequences it produces for the examples given in Figure 7.4.
Here’s the resulting De Bruijn cycle for n = 6 and k = 2.

0 000001 000011 000101 000111 001 001011 001101 001111 01 010111 011 011111 1

Here’s the resulting cycle for n = 4 and k = 3.

0 0001 0002 0011 0012 0021 0022 01 0102 0111 0112
0121 0122 02 0211 0212 0221 0222 1 1112 1122 12 1222 2

uvic01, c©Frank Ruskey, 1995–2001

7.3. DE BRUIJN SEQUENCES 221

These are, in fact, the lexicographically smallest De Bruijn cycles.
We now prove that the algorithm is correct. The algorithm is so elegant that one

would hope the same of the proof. Unfortunately, it is a rather uninspiring case analysis.
To understand the difficulties involved the reader should, before reading the proof, try to
figure out the location of a few specific strings in the output of the algorithm. For example,
in the list for k = 3 and n = 9, where does 220121012 appear? For k = 3 and n = 8, where
does 22012201 appear?

Theorem 7.6 The list of successive periodic reductions of necklaces as produced by the
FKM algorithm forms a De Bruijn cycle.

Proof: Let D denote the list of k-ary symbols produced by concatenating the successive
periodic reductions of necklaces from the FKM algorithm. Since (7.9) may be written as

kn =
∑

d\n

d · Lk(d),

the list D contains the correct number of digits. We now argue that each k-ary string α of
length n occurs as a substring of D, which will finish the proof.

Note that the first two outputs of the algorithms are 0 and 0n−11, and the last two
outputs are (k − 2)(k − 1)n−1 and (k − 1). Thus D has a prefix 0n and a suffix (k − 1)n,
from which it follows that all strings of the form (k − 1)p0n−p (where 0 ≤ p ≤ n) occur as
substrings in D. All other strings have the form

α = (k − 1)p(xy)t

where 0 ≤ p < n, t ≥ 1, yx ∈ L, xy contains some non-zero symbol, and the first symbol of
x is not k − 1. We will classify the possibilities for α according to whether p = 0, whether
t = 1, and whether y = ε.

Case 1 [p = 0, t = 1, y = ε]: Here α = x with x ∈ L. Trivially x appears as substring
in D since x is output by the algorithm.

Case 2 [p = 0, t > 1, y = ε]: Here α = xt with x ∈ L. The string x is output by
the algorithm, and the next string output by the algorithm is xt−1S(x), where S(x) is the
necklace the lexicographically follows x. Thus the string xt occurs in D since xxt−1S(x) is
a substring of D.

Case 3 [p = 0, t = 1, y 6= ε]: Here α = xy and yx ∈ L. The string yx is output by the
algorithm; what output follows it? Note that succ(yx) = yz for some string z since x is not
all (k − 1)’s (and y(k − 1)n−|y| ∈ L). What is the periodic reduction of yz? We claim that
it is a string with prefix y, which will finish this case. Observe from Theorem 7.5 that if
β ∈ L, then βr is the lexicographically smallest necklace of length r|β| with prefix β. Thus
it cannot be that yz = βr and β is a proper substring of y, since yx is a lexicographically
smaller necklace.

Case 4 [p = 0, t > 1, y 6= ε]: Here α = (xy)t and yx ∈ L. The string yx is output by the
algorithm, and the next string output by the algorithm is S((yx)t) = (yx)t−1yS(x), which
is aperiodic. Thus D contains the substring yx(yx)t−1yS(x); a string which contains α as
substring.

Case 5 [p > 0, t = 1, y = ε]: Here α = (k − 1)px with x ∈ L. The string D contains
β = pred (x)(k−1)p since β ∈ L. The next string output by the algorithm has prefix x, and
so D contains the substring pred(x)(k − 1)px.

uvic01, c©Frank Ruskey, 1995–2001

222 CHAPTER 7. DEBRUIJN CYCLES AND RELATIVES

Case 6 [p > 0, t > 1, y = ε]: Here α = (k − 1)pxt with x ∈ L. The string D contains
β = pred(x)(k − 1)n−d where d = |x|, since β ∈ L. Let n = md + r where 0 ≤ r < m.
If r > 0 (i.e., d does not divide n), then succ(β) = xmS(y) ∈ L where y is the string
consisting of the first r symbols of x. Since m ≥ t, the string α occurs on D. If r = 0, then
following β the algorithm outputs x, followed by xm−1S(x). Thus D contains the string
pred(x)(k − 1)n−dxxm−1S(x) which in turn contains α.

Case 7 [p > 0, t = 1, y 6= ε]: Here α = (k − 1)pxy with p ≥ 1 and yx ∈ L. Note that
γ = neck(α) is either (a) γ = xy(k − 1)p or (b) γ = y(k − 1)px. In case (a) γ ∈ L. We
may now proceed exactly as in Case 5, with xy playing the role of x. That is to say, D
will contain the string pred(xy)(k − 1)pxy. In case (b), if γ is aperiodic, then γ is output
by the algorithm and the following string output is of the form y(k − 1)pz, so α appears on
D. In case (b) if γ is periodic, then y(k − 1)p must be the periodic reduction, where, say,
γ = [y(k− 1)p]q. The algorithm outputs pred(y)(k− 1)n−|y|, followed by y(k− 1)p, followed
by [y(k − 1)q−1S(y(k − 1)p), and thus D contains α.

Case 8 [p > 0, t > 1, y 6= ε]: Here α = (k − 1)p(xy)t with p ≥ 1, t > 1, and yx ∈ L.
Note that γ = neck(α) must be γ = y(xy)t−1(k − 1)px ∈ L. The next string output by the
algorithm is y(xy)t−1(k − 1)pS(x), so again α occurs as a substring of D. ✷

From our previous analysis of the FKM algorithm we know that the total amount of
work, aside from outputting the symbols, in producing this cycle is Θ(kn/n). Thus the time
required to produce the De Bruijn cycle is dominated by the time to output the digits; i.e.,
it is Θ(kn) which is best possible.

7.4 Computing the Necklace of a String

Given a string, it is often useful to compute its necklace. Such applications arise in several
diverse areas such as graph drawing, where it is used to help determine the symmetries of
a graph to be drawn in the plane.

Recall that for any string α = a1a2 . . . aN ∈ ΣN
k its necklace, neck(α) is the lexico-

graphically smallest of its circular shifts. The question naturally arises as how to efficiently
compute the necklace given the string. In this section we present an O(N) algorithm for
the task.

First we consider the problem of factoring a word as specified in the following theorem.

Theorem 7.7 (Chen, Fox, Lyndon) Any word α ∈ Σ+
k admits a unique factorization

α = α1α2 · · ·αm,

such that αi ∈ L for i = 1, 2, . . . ,m and

α1 ≥ α2 ≥ · · · ≥ αm.

Here are two examples of Lyndon factorizations.

011 011 00111 0 0 and 0102 0102 01 0 0

It is easy to see that such a factorization exists, since each letter is a Lyndon word and
any two Lyndon words x and y for which x < y can be concatenated to get another Lyndon
word xy. Uniqueness is also not hard to show. See Exercises 12 and 13.

There is also a version of this theorem that deals with factorizations into necklaces.

uvic01, c©Frank Ruskey, 1995–2001

7.4. COMPUTING THE NECKLACE OF A STRING 223

Theorem 7.8 Any word α ∈ Σ+
k admits a unique factorization

α = α1α2 · · ·αm,

such that αi ∈ N for i = 1, 2, . . . ,m and

α1 > α2 > · · · > αm.

Here are two examples of necklace factorizations, using the same words as above.

011011 00111 00 and 01020102 01 00

Duval [105] has developed an elegant, efficient algorithm for factoring a word. Our
version of the algorithm is essentially based on Theorem 7.5. The output of the algorithm
consists of indices 0 = k0, k1, k2, . . . , km = N such that

αi = aki−1+1, . . . , aki

Informally, the idea of the algorithm is to keep extending n and updating p until a value
an > an−p is encountered. Then a1 · · · ap is the longest prefix of α that is in L and βtγ =
a1 · · · an−1 where pt + |γ| = n − 1 with |γ| < p. The words

β, β, . . . , β
︸ ︷︷ ︸

t

, γ, causing output ki = i|β| for i = 1, 2, . . . , t

are the first t factors in the Lyndon factorization of α. Note that γ is the prefix of a Lyndon
word that is lexicographically less than β. Now apply the same algorithm to γ and the
remainder of α; i.e., to γanan+1 · · · aN . The details may be found in Algorithm 7.4.

D k := 0; a[N + 1] := −1;
while k < N do

n := k + 2; p := 1;
while a[n − p] ≤ a[n] do

if a[n − p] < a[n] then p := n − k;
n := n + 1;

repeat PrintIt(k); k := k + p;
until k ≥ n − p;

PrintIt(N);

Algorithm 7.4: Duval algorithm for factoring a string.

By moving the PrintIt(k) statement at line (D8) outside and just before the repeat
loop (i.e., between lines (D7) and (D8)), the algorithm will produce the necklace factoriza-
tion.

What is the running time of Duval’s algorithm? Note that the comparison an−p = an at
line (D4) is the most often executed statement. Let us assume that we are doing a necklace
factorization and that there are m factors. Let ki, ni, pi be the values of k, n, and p at the
end of the ith iteration of the outer while loop. The total number of comparisons done at
line (D4) on the i-th iteration is ni − ki−1 − 1. But by (D9), ni − ki ≤ pi so that

m∑

i=1

(ni − ki−1 − 1) = km +
m∑

i=1

(ni − ki − 1)

≤ N − m +
m∑

i=1

pi

≤ 2N − m

uvic01, c©Frank Ruskey, 1995–2001

224 CHAPTER 7. DEBRUIJN CYCLES AND RELATIVES

Thus the total number of comparisons done at line (D4) is at most 2N and the running
time of the algorithm is therefore O(N).

How to find a necklace

To find the necklace of a word α, use αα as the input to the necklace factorization algorithm
(or modify the algorithm to do arithmetic mod n). Suppose that βt is the necklace of α,
where β ∈ L. Then βt will occur as t factors in the Lyndon factorization of αα. We need
simply wait until a necklace factor of length |α| appears. When n − k > N (tested after
line (D9)), the string a[k + 1..k + N] is the necklace of α.

7.5 Universal Cycles

In this section we give a brief introduction to “Universal Cycles”. These are a very inter-
esting generalization of DeBruijn cycles introduced by Chung, Diaconis and Graham [77].
Many types of combinatorial objects are represented by strings of fixed length; suppose that
there are N total objects and each representation has length n. The problem is to find a
(circular) string D of length N such that every representative occurs exactly once as a con-
tiguous substring of D. For De Bruijn cycles we had N = 2n and the representations were
all bitstrings of length n. But what about combinations, permutations, set and numerical
partitions, etc?

k-permutations of an n-set

Suppose that we try to extend the De Bruijn cycle idea from subsets (bitstings of length
n) to k-permutations of an [n]. That is, we would like a circular string of length (n)k over
the alphabet [n] such that each k-permutation occurs exactly once as a substring. It is
natural to define a digraph G(n, k + 1) whose vertices are ([n])k, the k-permutations of
[n], and where a generic vertex a1a2 · · · ak has n − k + 1 outgoing edges whose endpoints
are a2 · · · akb for b ∈ [n] \ {a2, · · · , ak}. For example if k = 1 then G(n, 2) is the complete
directed graph; i.e., there is an edge between every pair of distinct vertices. Note that
G(n, k) is vertex-transitive.

One Eulerian cycle in G(4, 2) is shown below.

1 2 3 4 1 4 2 4 3 2 1 3

Lemma 7.5 For 1 ≤ k < n, the graph G(n, k) is Eulerian.

Proof: It is easy to see that the in-degree of each vertex is also n − k + 1. We need only
show that G(n, k) is strongly connected. Given a = a1a2 · · · ak ∈ ([n])k, note that there
is a cycle of length k in G(n, k) that contains every circular permutation of a, namely the
one obtained by repeatedly using edges of the form xα → αx. We now show that there is
a path from a to a with any two of its adjacent elements transposed. To do this, we need
only show the existence of a path from a to a2a1a3 · · · ak. Let x 6∈ {a1, a2, . . . , ak}. Then
there is a path

a1a2a3 · · · ak → a2a3 · · · akx → a3 · · · akxa1
∗
→

xa1a3 · · · ak → a1a3 · · · aka2
∗
→ a2a1a3 · · · ak

uvic01, c©Frank Ruskey, 1995–2001

7.5. UNIVERSAL CYCLES 225

as claimed, where
∗
→ denotes a path of some length. This implies that there is a path from

a to b = b1b2 · · · bk where b1 < b2 < · · · < bk and {b1, b2, . . . , bk} = {a1, a2, . . . , ak}. We
now show that there is a path from b to 12 · · · k. Since G(n, k) is vertex-transitive, that
will finish the proof. Let i be the smallest value for which bi 6= i and bi+1 > i + 1; if there
is no such value, then we are done. The following path is in G(n, k).

b1b2 · · · bk
∗
→ bi+1 · · · bk1 · · · i → bi+2 · · · bk1 · · · i(i + 1)

∗
→ 12 · · · i(i + 1)bi+2 · · · bk.

Continuing in this manner we eventually reach 12 · · · k. ✷

It would be interesting to develop a fast algorithm to output an Eulerian cycle whose
existence is guaranteed by the lemma.

If n = k then G(n, k) consists of n!/2 2-cycles of the form π1π2 · · · πn ⇋ π2 · · · πnπ1, and
is thus not Eulerian. Another way to view this is as follows. Consider n = 3. The substring
123 must occur, but what symbol follows the 3? It must be 1. And then 2 and then 3. But
123123 does not satisfy our criteria since, for example, 321 does not occur as a substring.
The problem occurs because we have insisted on [n] as our alphabet. Consider the string

1 4 5 2 4 3

This contains the substring 431 which we consider to represent the permutation 321 (which
we missed before). Below are the six substrings of length 3 and the corresponding permu-
tations of [3].

substring 145 452 524 243 431 314
permutation 123 231 312 132 321 213

More formally, we say that permutations of natural numbers, π and π′, both of length
n, are order isomorphic if πi < πj if and only if π′

i < π′
j for all 1 ≤ i, j ≤ n. Our problem is

to find a string of numbers whose substrings are order isomorphic to the n! permutations
of [n].

Here’s a string that works for n = 4.

1 2 3 4 1 2 5 3 4 1 5 3 2 1 4 5 3 2 4 1 3 2 5 4

How could we construct such a string? Do they always exist? How many extra symbols
must be used? Taking our clue from De Bruijn sequences we define a graph and look for
Eulerian cycles in that graph. !!! need to put in the rest of the stuff from the CDG
paper !!!.

Let N(n) be the number of extra symbols that are necessary to construct a U-cycle for
permutations. Chung, Graham and Diaconis conjecture that N(n) = n + 1; that n + 1 ≤
N(n) ≤ n + 6 is known.

Set Partitions

a b c b c c c c d d c d e e f

Murasaki Universal Cycles?

uvic01, c©Frank Ruskey, 1995–2001

226 CHAPTER 7. DEBRUIJN CYCLES AND RELATIVES

Combinations

Here’s a U-cycle for n = 8 and k = 3, where the underlying set is Σ8.

02456145712361246703671345034601250135672560234723570147

Lemma 7.6 If there is a U-cycle for A(n, k) then k divides
(n−1
k−1

)
.

Chung, Graham and Diaconis conjecture that this necessary condition is also sufficient
as long as n is large enough, but there are also conjectures to the contrary!

7.6 Polynomials over finite fields

Polynomials whose coefficients are the elements of a finite field have many applications in
mathematics and engineering. Of particular interest are what are known as irreducible
polynomials and primitive polynomials. Somewhat surprisingly, we can use our algorithm
for generating Lyndon words as the basis of an algorithm for generating all such polyno-
mials of a given degree. This section will be brief and most proofs will be omitted as the
mathematics necessary is non-trivial and would take more room than we have here. Several
excellent introductions to finite fields are mentioned in the bibliographic remarks. Nev-
ertheless, the careful reader should have little trouble turning the discussion here into a
functioning program, particulary if written in a language for symbolic calculations, such as
Maple. There is another connection between polynomials and the material presented earlier
in this chapter, namely that a primitive polynomial ca be used to efficiently generate a de
Bruijn sequence.

Let p(x) be a monic polynomial over GF(q). Recall that GF(q) refers to the field of
integers mod q and that q must be a prime power. The polynomial p(x) is irreducible if it
cannot be expressed as the product of two polynomials of lower degree.

If β is a root of a degree n polynomial p(x) over GF(q), then the conjugates of β
are β, βq, . . . , βqn−1

. Each conjugate is also a root of p(x). Irreducible polynomials are
characterized in the following theorem.

Theorem 7.9 Let p be a degree n polynomial over GF(q) and β a root of p. The polynomial
p is irreducible if and only if the conjugates of β are distinct.

An element α of GF(q) is primitive if k = qn −1 is the smallest non-zero value for which
αk = 1. A degree n polynomial p(x) over GF(q) is primitive if it is irreducible and contains
a primitive element of GF(qn) as a root. In other words, to test whether an irreducible
polynomial p(x) is primitive.....

The number of primitive polynomials over GF(q) is known to be

Pn(q) =
1

n
φ(qn − 1)

Here is a small table for q = 2.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pn(q) 1 1 2 2 6 6 18 16 48 60 176 144 630 756 1800 2048

uvic01, c©Frank Ruskey, 1995–2001

7.6. POLYNOMIALS OVER FINITE FIELDS 227

The number of irreducible polynomials of degree n over GF(q) is given by the so-called
“Witt formula”

Iq(n) =
1

n

∑

d\n

µ(n/d)qd

This is the same as the number of Lyndon words, Ik(n) = Lk(n). This remarkable coinci-
dence cries out for an explanation and a purpose of this section is to supply one. The key
to the correspondence is Theorem 7.9.

If α is a generator of GF(qn) − {0}, then β = αk for some k. The conjugates of β are
thus

αk, (αk)q, . . . , (αk)q
n−1

.

Which k’s will give rise to β’s that are the roots of irreducible polynomials? Since the
conjugates are all distinct, they are the k’s for which k, qk, q2k, . . . , qn−1k are all distinct
mod qn − 1. Thinking of k as a length n base q number, the conjugates are all the circular
shifts of k. For them to be distinct k has to be a q-ary length n Lyndon word.

Lyndon word k irreducible polynomial order e
000001 1 1000011 63
000011 3 1010111 21
000101 5 1100111 63
000111 7 1001001 9
001011 11 1101101 63
001101 13 1011011 63
001111 15 1110101 21
010111 23 1110011 63
011111 31 1100001 63

Given k the order of the polynomial is (qn−1)/gcd(qn−1, k). The primitive polynomials
are those of order qn − 1.

The polynomial p(x) = x6 + x + 1 is known to be primitive over GF(2). Let β be a
root of p(x). Thus β6 = 1 + β. We now illustrate the correspondence on the Lyndon words
000001 and 001011; corresponding to α = 1 and α = 11, respectively. We now compute
(note that (1 + α)2 = 1 + α2). First, with α = 1.

r(x) = (x+β)(x+β2)(x+β4)(x+β8) (x+β16)(x+β32)

= (x2+(β+β2)x+β3)(x+β4)(x+β2(1+β)) ×

(x+β4(1+β)2)(x+β2(1+β)2(1+β)2(1+β))

= (x2+(β+β2)x+β3)(x+β4)(x+β2+β3)) ×

(x+β4(1+β2))(x+β2(1+β2)2(1+β))

= (x+β)(x+β2)(x+β4)(x+β2+β3))(x+1+β+β4)(x+β2(1+β4)(1+β))

= (x+β)(x+β2)(x+β4)(x+β2+β3))(x+1+β+β4)(x+1+β3)

= (x+(β+β2)x+x2)(x+β4)(x+β2+β3))(x+1+β+β4)(x+1+β3)

= (x+(β+β2)x+x2)(x+β4)(x+β2+β3))(x+1+β+β4)(x+1+β3)

= x6+x+1

uvic01, c©Frank Ruskey, 1995–2001

228 CHAPTER 7. DEBRUIJN CYCLES AND RELATIVES

0 1 11

r1r1r3 r2

inputoutput

Figure 7.6: The LFSR corresponding to the polynomial x4 + x + 1.

Now with α = 11 (note that β64 = 1).

r(x) = (x+β11)(x+β22)(x+β44)(x+β88)(x+β176)(x+β352)

= (x+β11)(x+β22)(x+β44)(x+β24)(x+β48)(x+β32)

= (x+β5(1+β))(x+β4(1+β)3)(x+β2(1+β)7) ×

(x+(1+β)4)(x+(1+β)8)(x+β2(1+β)5)

= x6+x5+x3+x2+1

Theorem 7.10 Every string of length n, except 0n occurs in a linear recurring sequence
generated by a primitive polynomial over GF(pn).

For example, the polynomial p(x) = x4 + x + 1 is primitive over GF(2). It generates a
linear recurring sequence defined by the recurrence relation

cn = cn−3 + cn−4.

Using the initial conditions c1, c2, c3, c4 = 1, 0, 0, 0 we obtain the sequence

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

Inserting another 0 into the block of n − 1 0’s produces a De Bruijn sequence, but not all
De Bruijn sequences are obtained in this manner.

7.6.1 Linear Feedback Shift Registers

A linear feedback shift register, or LFSR, is a device like that illustrated in Figure 7.6 On
each clock cycle the bit in cell rk−1 is output and fed back into some subset of the cells,
depending on the placement of the feedback lines. There is one feedback line corresponding
to each non-zero term of its polynomial. If the feedback line is present, then the new value
of ri is ri−1 ⊕ rk−1, otherwise it is just ri−1. The value of r−1 is taken to be zero, which
means that the exclusive-or gate feeding into r0 is redundant; it is shown for the sake of
consistency.

do { if ((x <<= 1) >> k) x = x & ONES ^ PP;

} while (x != INITIAL);

Algorithm 7.5: C code for iterating an LFSR.

Algorithm 7.5 generates the De Bruijn sequence in the least significant bit of the unsigned
integer x, whose initial value is INITIAL. The algorithm is simulating the action of the LFSR.

uvic01, c©Frank Ruskey, 1995–2001

7.7. EXERCISES 229

Unsigned integer PP is a bitstring encoding of a primitive polynomial, 0011 in the example
above. Constant ONES is a bitstring of k 1’s in the lower order bits. This code essentially
generates each new value of x in constant time. The only problematic operation is the shift
right by k positions. On most modern computers this shift should be executed in one or
two machine instructions.

7.6.2 Another look at the BRGC

We may identify a bitstring b0b1 · · · bn−1 with a degree n − 1 polynomial over GF(2) under
the bijection

b0b1 · · · bn−1 ↔

n−1∑

i=0

bix
i.

Under this bijection a right shift corresponds to multiplying by x and componentwise
exclusive-or to addition mod 2. Thus if g(x) is the polynomial corresponding to the bth
word in the BRGC, then

g(x) = (1 + x)b(x).

Since the algebraic inverse of 1 + x is the polynomial 1 + x + · · · + xn−1 (check this!),
the procedure for converting from the BRGC to binary corresponds to multiplication by
1 + x + · · · + xn−1. That is,

b(x) = (1 + x + · · · + xn−1)g(x).

7.7 Exercises

1. [1] What is the length of a maximal domino game for a general value of n (dots taken
from [n])?

2. [2+] Show that there is a string s0s2 · · · s2n!−1 of length 2n! over the alphabet [n] such
that

{sisi+1 · · · si+n!−1 : i = 0, 2, . . . , 2n!},

where the index arithmetic is taken mod 2n!, is the set of all n! permutations of [n].

3. [R−] How many Eulerian cycles does the directed n-cube ~Qn have?

4. [R−] Develop a CAT or, better yet, loopfree algorithm for generating an Eulerian
cycle in ~Qn.

5. [2] Use (7.10) to prove (7.7).

6. [2+] Let N(n0, n1, . . . , nt) denote the number of necklaces composed of ni occurrences
of the symbol i, for i = 0, 1, . . . , t. Let n = n0 + n1 + · · · + nt. Prove that

N(n0, n1, . . . , nt) =
1

n

∑

d\ gcd(n0,...,nt)

φ(d)
(n/d)!

(n0/d)! · · · (nt/d)!

uvic01, c©Frank Ruskey, 1995–2001

230 CHAPTER 7. DEBRUIJN CYCLES AND RELATIVES

In particular, if t = 1, then

N(r, n − r) =
1

n

∑

d\ gcd(r,n−r)

φ(d)

(
n/d

r/d

)

gives the number of necklaces with r black beads and n − r white beads.

7. [1+] Find a simple one-to-one correspondence between length 2n necklaces with n
black beads and n white beads and rooted plane trees with n edges.

8. [2+] Derive a formula for the number of binary Lyndon words of length n and weight
r. The weight of a string of digits is the sum of those digits. [2+] Let eLk(n) be
the number of length n Lyndon words of even weight, oLk(n) be the number of odd
weight, and dLk(n) be the difference dLk(n) = eLk(n)− oLk(n). Show that dL2(n) =
n−1

∑
µ(d)2n/d where the sum is over all odd d\n. Show that dL2(2n) = −oL2(n).

9. [1] For odd n, show that eN2(n), the number of binary necklaces with an even number
of 1’s, is equal to oN2(n), the number of binary necklaces with an odd number of 1’s.

10. [1+] What bitwise operations preserve necklaces (or prenecklaces, or Lyndon words)?
I.e., is the intersection of necklaces a necklace? What about union and exclusive-or?

11. [1+] Modify both the iterative and the recursive versions of the necklace generating
algorithms so that the produce necklaces in relex order, instead of lex order. Which
algorithm was easier to modify?

12. [2] Prove that w ∈ L if and only if w < v for all uv = w where v 6= ε. I.e., a word is
a Lyndon word if and only if it is strictly less than all of its proper suffixes.

13. [2] Prove that if x and y are both Lyndon words and x < y then xy is also a Lyndon
word. Finish the proof of the Chen, Fox, Lyndon Theorem 7.7 by showing that the
Lyndon factorization is unique.

14. [3] Define an involution τ on {0, 1}n by

τ(x1 . . . xn) = x1 . . . xn−1xn,

where xn denotes the complement of the bit xn, and let σ(x) denote the rotation of
string x one position left. Show that the calls: Print(0n); Gen(0n−11); generate all
necklaces of length n in two colors, where Gen is the procedure shown below.

procedure Gen (x : necklace);
begin

Print(x);
x := τ(x);
while IsNecklace(x) do begin

Gen(x);
x := τστ−1(x);

end;
end {of Gen};

uvic01, c©Frank Ruskey, 1995–2001

7.7. EXERCISES 231

15. [2] Let ρ = τσ where τ and σ are as in the previous exercise. In other words,

ρ(b1b2 · · · bn) = b2 · · · bnb1

Define an equivalence relation ∼ between bitstrings x and y of length n as follows:
x ∼ y if and only if there is a number k such that ρk(x) = y. Show that the number
of such equivalence classes is

1

2n

∑

d\n
d odd

2n/dφ(d).

There is a one-to-one correspondence between such equivalence classes and what are
known as “vortex-free” tournaments.

16. [R−] Let V(n) denote the set of lexicographically least representatives of length n of
the equivalence classes of ∼, as defined in the previous exercise. For example V(n) =
{00000, 00010, 00100, 01010}. Develop an efficient, and preferably CAT, algorithm to
generate V(n).

17. [2] How many n-bead necklaces are there, composed of white and black beads, and
with no two adjacent black beads? How many such necklaces are aperiodic? Prove the
following, a kind of Fermat’s Little Theorem for Fibonacci numbers: If p is a prime,
then Fp+1 + Fp−1 ≡ 1 (mod p). [R−] Given a forbidden pattern P (a bitstring —
00 in the first part of this problem), how many necklaces of length n are there without
P as a substring? How fast can you compute the number?

18. [R−] Develop an efficient ranking algorithm for prenecklaces, necklaces, and Lyndon
words in the order that they are generated by the FKM algorithm.

19. [R] Develop an efficient ranking algorithm for some De Bruijn sequence. If the De
Bruijn sequence arising from the FKM algorithm is used then the results of the pre-
vious exercise should be useful.

20. [1+] Prove that if α ∈ Pk(n) then α(k − 1)n ∈ Nk(n). This means that every pre-
necklace α is also the prefix of a Lyndon word, unless α is a string of (k−1)s of length
greater than 1.

21. [2] Prove: α ∈ P if and only if xy ≤ yz and x ≤ z for all x, y, z such that α = xyz
with |x| = |z|.

22. [R] Find a Gray code (successive words differ by one bit) of Lyndon words when k = 2
or prove that no such code exists.

23. [3+] Let n > 1 and p, q > 1. Show that Lq+4(n) − Lq(n) is even and hence that
if p ≡ q (mod 4), then Lq(n) ≡ Lp(n) (mod 2). Use this result to determine the
parity of Lq(n).

24. [2] Prove that Lpq(n) =
∑

gcd(i, j)Lp(i)Lq(j) where the sum is taken over all i and
j such that lcm(i, j) = n.

uvic01, c©Frank Ruskey, 1995–2001

232 CHAPTER 7. DEBRUIJN CYCLES AND RELATIVES

25. [2] Find a class of words that causes the Duval algorithm to use 2N−o(N) comparisons
for infinitely many values of N .

26. [R−] For a binary alphabet, what is the maximum number of comparisons that can
be used by the Duval algorithm on a string of length N? For a k-ary alphabet?

27. [R−] Develop a CAT algorithm for generating all necklaces where the number of
beads of each color is fixed. The number of such necklaces was determined in Exercise
6. Even the two color case is open.

28. [R−] Develop a CAT algorithm for generating the lexicographically least representa-
tives of the equivalence classes of k-ary strings of length n that are equivalent under
rotation or reversal. In other words, the dihedral group is acting on the strings and
not just the cyclic group. Such equivalence classes are sometimes called bracelets.

29. [2] What about 2-dimensional analogues of De Bruijn cycles? These are sometimes
called De Bruijn torii. (a) Consider the set of 2 by 2 tiles where each square of the
tile is colored black or white. There are 16 such tiles. Can they be placed in a 4
by 4 arrangement so that their borders match, where the border wrap-around in the
manner of a torus? (b) Now let each tile be colored with three colors, say white, gray,
and black. There are 81 tiles. Can they be placed in a 9 by 9 arangements so that
the colors along their borders match?

30. [2] For those who know about context-free languages: Use a closure property to prove
that N and L are not context-free languages. Use the “pumping lemma” to prove
that N and L are not context-free languages.

31. [2] Let I(n, k) be the set of permutations π ∈ Sn such that πk = 1, the identity
permutation, and I(n, k) = |I(n, k)|. Thus I(n, 2) counts the number of involutions
in Sn. Show that

I(n, k) =
∑

d\k

(
n − 1

d − 1

)

(d − 1)!I(n − d, k).

[R−] Develop a CAT algorithm for generating the elements of I(n, k).

32. [1] Modify algorithm 7.5 so that it outputs a De Bruijn sequence.

7.8 Bibliographic Remarks

The Eulerian cycle in ~Qn is from Bate and Miller [32].
An early paper containing an algorithm for constructing a DeBruijn cycle is Martin [292].

More recent papers about generating De Bruijn cycles include Fredricksen and Kessler [157],
Fredricksen [156], Ralston [355], Huang [202], and Xie [503]. It is rather remarkable that
there is a simple closed form formula for the number of distinct De Bruijn cycles.

(k!)k
n−1

/kn.

This formula was proven by Van Aardenne-Ehrenfest and De Bruijn [464], but was an-
ticipated by Flye-St. Marie [149]. It is even possible to count the number of Eulerian

uvic01, c©Frank Ruskey, 1995–2001

7.8. BIBLIOGRAPHIC REMARKS 233

cycles (directed or undirected) in a graph. See Fleishner’s book [146], which contains ev-
erything you could want to know about Eulerian cycles. Generating all Eulearian cycles
was considered by Fleishner [147].

Interesting material about De Bruijn cycles may be found in Stewart [440].
The algorithm ??? for generating necklaces is from Fredricksen and Maiorana [155]

and Fredricksen and Kessler [154]. Independently, Duval [106] developed a version of the
algorithm that generates Lyndon words. Duval [105] is our source for the material of the
section on finding the necklace of a string.

The formula (7.7) has been attributed by Comtet [80] to the 1892 paper of Jablonski
[208]. It is credited to “Colonel Moreau of the French Army” by Metroplis and Rota [305].
Cummings and Mays [88] determine the parity of the Witt formula.

Papers about generating primitive and irreducible polynomials include Lüneburg [285],
and Gulliver, Serra and Bhargava [176]. The relationship between irreducible polynomials
and Lyndon words is explored in Golomb [170], Lüneburg [285], [286], and Reutenauer [371].
Tables of primitive polynomials may be found there and in Peterson and Weldon [336] and

Serra [415].
An analysis of the FKM algorithm is given in Ruskey, Savage, and Wang [388]. Duval’s

nearly identical algorithm is analyzed in Berstel and Pocchiola [39]. The recursive version
of the FKM algorithm (Algorithm 7.3) is believed to be new.

A CAT algorithm for necklaces where the number of 0’s is fixed may be found in Ruskey
and Sawada [390]. A CAT algorithm for binary bracelets was developed by Sawada [406].

More material on Lyndon words may be found in Lothaire [279].
Universal cycles were introduced in Chung, Diaconis and Graham [77]. Later develop-

ments may be found in Jackson [209] and Hurlbert [204], [205].
There is a delightful chapter called “The Autovoracious Ourotorus” about De Bruijn

cycles and generalizations in Stewart [440].

uvic01, c©Frank Ruskey, 1995–2001

