7.2.2.2. Satisfiability. We turn now to one of the most fundamental problems of computer science: Given a Boolean formula $F\left(x_{1}, \ldots, x_{n}\right)$, expressed in socalled "conjunctive normal form" as an AND of ORs, can we "satisfy" F by assigning values to its variables in such a way that $F\left(x_{1}, \ldots, x_{n}\right)=1$? For example, the formula

$$
\begin{equation*}
F\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \tag{1}
\end{equation*}
$$

is satisfied when $x_{1} x_{2} x_{3}=001$. But if we rule that solution out, by defining

$$
\begin{equation*}
G\left(x_{1}, x_{2}, x_{3}\right)=F\left(x_{1}, x_{2}, x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \tag{2}
\end{equation*}
$$

then G is unsatisfiable: It has no satisfying assignment.
that simplification, and with ' x_{j} ' identical to ' j ', Eq. (1) becomes

$$
F=\{\{1, \overline{2}\},\{2,3\},\{\overline{1}, \overline{3}\},\{\overline{1}, \overline{2}, 3\}\} .
$$

And we needn't bother to represent the clauses with braces and commas either; we can simply write out the literals of each clause. With that shorthand we're able to perceive the real essence of (1) and (2):

$$
\begin{equation*}
F=\{1 \overline{2}, 23, \overline{1} \overline{3}, \overline{1} \overline{2} 3\}, \quad G=F \cup\{12 \overline{3}\} \tag{3}
\end{equation*}
$$

Find a binary sequence $x_{1} \ldots x_{8}$ that has no three equally spaced $0 s$ and no three equally spaced 1 s . For example, the sequence 01001011 almost works; but it doesn't qualify, because x_{2}, x_{5}, and x_{8} are equally spaced 1 s .

Find a binary sequence $x_{1} \ldots x_{8}$ that has no three equally spaced $0 s$ and no three equally spaced 1 s . For example, the sequence 01001011 almost works; but it doesn't qualify, because x_{2}, x_{5}, and x_{8} are equally spaced 1 s .
integers j and k : If n is sufficiently large, every binary sequence $x_{1} \ldots x_{n}$ contains either j equally spaced 0 s or k equally spaced 1 s . The smallest such n is denoted

Find a binary sequence $x_{1} \ldots x_{8}$ that has no three equally spaced $0 s$ and no three equally spaced 1s. For example, the sequence 01001011 almost works; but it doesn't qualify, because x_{2}, x_{5}, and x_{8} are equally spaced 1 s .
integers j and k : If n is sufficiently large, every binary sequence $x_{1} \ldots x_{n}$ contains either j equally spaced 0 s or k equally spaced 1 s . The smallest such n is denoted Find Boolean formula satisfiable iff $\exists n$-bit sequence with no j equally spaced 0 s and not k equally spaced 1 s . A variable x_{i} for each bit...

Find a binary sequence $x_{1} \ldots x_{8}$ that has no three equally spaced $0 s$ and no three equally spaced 1s. For example, the sequence 01001011 almost works; but it doesn't qualify, because x_{2}, x_{5}, and x_{8} are equally spaced 1 s .
integers j and k : If n is sufficiently large, every binary sequence $x_{1} \ldots x_{n}$ contains either j equally spaced 0 s or k equally spaced 1 s . The smallest such n is denoted Find Boolean formula satisfiable iff $\exists n$-bit sequence with no j equally spaced 0 s and not k equally spaced 1 s . A variable x_{i} for each bit...

Let us accordingly define the following set of clauses when $j, k, n>0$:

$$
\begin{gather*}
\text { waerden }(j, k ; n)=\left\{\left(x_{i} \vee x_{i+d} \vee \cdots \vee x_{i+(j-1) d}\right) \mid 1 \leq i \leq n-(j-1) d, d \geq 1\right\} \\
\cup\left\{\left(\bar{x}_{i} \vee \bar{x}_{i+d} \vee \cdots \vee \bar{x}_{i+(k-1) d}\right) \mid 1 \leq i \leq n-(k-1) d, d \geq 1\right\} . \tag{10}
\end{gather*}
$$

Find a binary sequence $x_{1} \ldots x_{8}$ that has no three equally spaced $0 s$ and no three equally spaced 1 s . For example, the sequence 01001011 almost works; but it doesn't qualify, because x_{2}, x_{5}, and x_{8} are equally spaced 1 s .
integers j and k : If n is sufficiently large, every binary sequence $x_{1} \ldots x_{n}$ contains either j equally spaced 0 s or k equally spaced 1 s . The smallest such n is denoted Find Boolean formula satisfiable iff $\exists n$-bit sequence with no j equally spaced 0 s and not k equally spaced 1 s . A variable x_{i} for each bit...

Let us accordingly define the following set of clauses when $j, k, n>0$:

$$
\begin{gather*}
\text { waerden }(j, k ; n)=\left\{\left(x_{i} \vee x_{i+d} \vee \cdots \vee x_{i+(j-1) d}\right) \mid 1 \leq i \leq n-(j-1) d, d \geq 1\right\} \\
\cup\left\{\left(\bar{x}_{i} \vee \bar{x}_{i+d} \vee \cdots \vee \bar{x}_{i+(k-1) d}\right) \mid 1 \leq i \leq n-(k-1) d, d \geq 1\right\} . \tag{10}
\end{gather*}
$$

```
for i from 1 to n-(j-1)
    for d from 1 to floor((n-i)/(j-1))
    AddClause({i+0*d, i+1*d, ..., i+(j-1)*d})
for i from 1 to n-(k-1)
    for d from 1 to floor((n-i)/(k-1))
    AddClause({-(i+0*d), -(i+1*d), ..., -(i+(k-1)*d)})
```

c	3	3	8						
p	$c n f$	8	24	-1	-2	-3	0		
1	2	3	0		-1	-3	-5	0	
1	3	5	0		-1	-4	-7	0	
1	4	7	0			-2	-3	-4	0
2	3	4	0		-2	-4	-6	0	
2	4	6	0		-2	-5	-8	0	
2	5	8	0		-3	-4	-5	0	
3	4	5	0		-3	-5	-7	0	
3	5	7	0		-4	-5	-6	0	
4	5	6	0		-4	-6	-8	0	
4	6	8	0		-5	-6	-7	0	
5	6	7	0		-6	-7	-8	0	
6	7	8	0						

Online SAT Solver

Online SAT Solver

DIMACS (CNF) format and SAT Solvers

$\underset{\text { is page }}{\text { P }}$ people.sc.fsu.edu/~jburkardt/data/

Here is the CNF file that corresponds to the simple formula discussed above:

```
c simple_v3_c2.cnf
c
p cnf 3 2
1 -3 0
2 3 -1 0
```


DIMACS (CNF) format and SAT Solvers

$\leftarrow \rightarrow$ C \square www.satlive.org/solvers/

SAT solvers

CDCL sat solvers

- Clasp c++
- Glucose c++
- Lingeling C++
- Minisat C++
- Picosat C
- Sat4j Java Epllegl

$\leftarrow \rightarrow$ C minisat.se/MiniSat.html

Main

MiniSat

MiniSat+

SatELite

Papers

Authors

Links

MiniSat

MiniSat started out 2003 as an effort to help I documentation (through the following paper). containing all the features of the current stat dynamic variable order, two-literal watch sche variables.

In later versions, the code base has grown a bit competition 2005, version 1.13 proved that Min

Below we provide a set of different versions o extensions and suggestions for improvements, freer licence than the LGPL, basically allowing y

The Glucose SAT Solver

Glucose is based on a new scoring scheme (well, not so new now, it was introduced in 2009) for the clause learning mechanism of so called "Modern" SAT sovlers (it is based our IJCAl'09 paper). It is designed to be parallel, since 2014. This page summarizes the techniques embedded in all the versions of glucose. The name of the Solver name is a contraction of the concept of "glue clauses", a particular kind of clauses that glucose detects and preserves during search.
A Glucose is heavily based on Minisat, so please do cite Minisat also if you want to cite Glucose.

DIMACS-TO-SAT and SAT-TO-DIMACS
Filters to convert between DIMACS format for SAT problems and the symbolic semant SAT0

My implementation of Algorithm 7.2.2.2A (very basic SAT solver)
SATOW
My implementation of Algorithm 7.2.2.2B (teeny tiny SAT solver)
SAT8
My implementation of Algorithm 7.2.2.2W (WalkSAT)
SAT9
My implementation of Algorithm 7.2.2.2S (survey propagation SAT solver)
SAT10
My implementation of Algorithm 7.2.2.2D (Davis-Putnam SAT solver)

SAT11

My implementation of Algorithm 7.2.2.2 (lookahead 3SAT solver) SAT11K

Change file to adapt SAT11 to clauses of arbitrary length
SAT12 and the companion program SAT12-ERP
My implementation of a simple preprocessor for SAT
SAT13
My implementation of Algorithm 7.2.2.2C (conflict-driven clause learning SAT solver) SAT-LIFE

Various programs to formulate Game of Life problems as SAT problems (July 2013)
SATexamples
Programs for various examples of SAT in Section 7.2.2.2 of TAOCP; also more than a l

ヘ Laurent Simon \star Glucose 日 Pu

B D．Knuth and

Glucose

Among the short list of programs of Prof． Don Knuth，you may want to take a deep look at the is SAT13．w，his CDCL implementation．Very interesting and insightful．With glucose－techniques inside！

步
ver：

Th fmv．jku．at／picosat／	file．The previous release 951 is a cleaned－up version after incorporating comments by Donald Knuth．

Back to binary Waerden sequences!

Recall
integers j and k : If n is sufficiently large, every binary sequence $x_{1} \ldots x_{n}$ contains either j equally spaced 0 s or k equally spaced 1 s. The smallest such n is denoted

Back to binary Waerden sequences!

Recall
integers j and k : If n is sufficiently large, every binary sequence $x_{1} \ldots x_{n}$ contains either j equally spaced 0 s or k equally spaced 1 s. The smallest such n is denoted Boolean formula satisfiable iff $\exists n$-bit sequence with no j equally spaced 0 s and not k equally spaced 1 s .

Let us accordingly define the following set of clauses when $j, k, n>0$:

$$
\begin{gather*}
\text { waerden }(j, k ; n)=\left\{\left(x_{i} \vee x_{i+d} \vee \cdots \vee x_{i+(j-1) d}\right) \mid 1 \leq i \leq n-(j-1) d, d \geq 1\right\} \\
\cup\left\{\left(\bar{x}_{i} \vee \bar{x}_{i+d} \vee \cdots \vee \bar{x}_{i+(k-1) d}\right) \mid 1 \leq i \leq n-(k-1) d, d \geq 1\right\} . \tag{10}
\end{gather*}
$$

Back to binary Waerden sequences!

Recall
integers j and k : If n is sufficiently large, every binary sequence $x_{1} \ldots x_{n}$ contains either j equally spaced 0 s or k equally spaced 1 s. The smallest such n is denoted Boolean formula satisfiable iff $\exists n$-bit sequence with no j equally spaced 0 s and not k equally spaced 1 s .

Let us accordingly define the following set of clauses when $j, k, n>0$:

$$
\begin{gather*}
\text { waerden }(j, k ; n)=\left\{\left(x_{i} \vee x_{i+d} \vee \cdots \vee x_{i+(j-1) d}\right) \mid 1 \leq i \leq n-(j-1) d, d \geq 1\right\} \\
\cup\left\{\left(\bar{x}_{i} \vee \bar{x}_{i+d} \vee \cdots \vee \bar{x}_{i+(k-1) d}\right) \mid 1 \leq i \leq n-(k-1) d, d \geq 1\right\} . \tag{10}
\end{gather*}
$$

The 32 clauses in (9) are waerden $(3,3 ; 9)$; and in general waerden $(j, k ; n)$ is an appealing instance of SAT, satisfiable if and only if $n<W(j, k)$.

It's obvious that $W(1, k)=k$ and $W(2, k)=2 k-[k$ even $]$; but when j and k exceed 2 the numbers $W(j, k)$ are quite mysterious. We've seen that $W(3,3)=9$, and the following nontrivial values are currently known:

Exact Cover

Given a $0-1$ matrix, find a selection of the rows that has exactly one 1 in each column.

Langford pairing

A permutation of $1,1,2,2,3,3, \ldots, n, n$ so that the two $k s$ are k "slots" apart.

Langford pairing

A permutation of $1,1,2,2,3,3, \ldots, n, n$ so that the two $k s$ are k "slots" apart.

Express as exact cover. Find a selection of the rows that has exactly one 1 in each column.

100010100000	1	$1.1 \ldots$.
100001010000	1	$.1 .1 \ldots$
100000101000	1	$\ldots 1.1 \ldots$
100000010100	1	$\ldots 1.1$.
100000001010	1	$\ldots .1 .1$.
100000000101	1	$\ldots \ldots 1.1$
010010010000	2	$1 \ldots 1 \ldots$
010001001000	2	$.1 \ldots 1 \ldots$
010000100100	2	$\ldots 1 \ldots 1$.
010000010010	2	$\ldots 1.1$.
010000001001	2	$\ldots 1 \ldots 1$
001010001000	$31 \ldots 1 \ldots$	
001001000100	3	$1 \ldots 1$.
001000100010	3	$1 \ldots 1$.
001000010001	$3 \ldots 1 \ldots 1$	
000110000100		$41 \ldots .1$.
000101000010		$4.1 \ldots .1$.
000100100001		$4 \ldots 1 \ldots$.

Exact Covering as SAT problem

Assign y_{i} to row i. Obtain conditions:

- Column 1: $y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}=1$
- Column 2: $y_{7}+y_{8}+y_{9}+y_{10}+y_{11}=1$
- Column 5: $y_{1}+y_{7}+y_{12}+y_{16}=1$
- Column 6: $y_{2}+y_{8}+y_{13}+y_{17}=1$
- Column 12: $y_{6}+y_{11}+y_{15}+y_{18}=1$

1	$1.1 \ldots$.
1	$.1 .1 \ldots$
1	$\ldots 1.1 \ldots$
1	$\ldots 1.1 \ldots$
1	$\ldots .1 .1$.
1	$\ldots \ldots 1.1$
2	$1 \ldots 1 \ldots$
2	$.1 \ldots 1 \ldots$
2	$\ldots 1 \ldots 1 \ldots$
2	$\ldots 1 \ldots 1$.
2	$\ldots .1 \ldots 1$
3	$1 \ldots 1 \ldots$
3	$.1 \ldots 1 \ldots$
3	$\ldots 1 \ldots 1$.
3	$\ldots 1 \ldots 1$
$41 \ldots 1$.	
$4.1 \ldots 1$.	
$4 \ldots 1 \ldots 1$	

Exact Covering as SAT problem

Assign y_{i} to row i. Obtain conditions:

- Column 1: $y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}=1$
- Column 2: $y_{7}+y_{8}+y_{9}+y_{10}+y_{11}=1$
- Column 5: $y_{1}+y_{7}+y_{12}+y_{16}=1$
- Column 6: $y_{2}+y_{8}+y_{13}+y_{17}=1$
- Column 12: $y_{6}+y_{11}+y_{15}+y_{18}=1$

Express symmetric function
$S_{1}\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right)=$
$\left[y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}=1\right]$ in CNF.

1	$1.1 \ldots$.
1	$.1 .1 \ldots$
1	$\ldots 1.1 \ldots$
1	$\ldots 1.1 \ldots$
1	$\ldots .1 .1$.
1	$\ldots \ldots 1.1$
2	$1 \ldots 1 \ldots$
2	$.1 \ldots 1 \ldots$
2	$\ldots 1 \ldots 1 \ldots$
2	$\ldots 1 \ldots 1$.
2	$\ldots .1 \ldots 1$
3	$1 \ldots 1 \ldots$
3	$.1 \ldots 1 \ldots$
3	$\ldots 1 \ldots 1$.
3	$\ldots 1 \ldots 1$
$41 \ldots 1$.	
$4.1 \ldots 1$.	
$4 \ldots 1 \ldots 1$	

Exact Covering as SAT problem

Assign y_{i} to row i. Obtain conditions:

- Column 1: $y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}=1$
- Column 2: $y_{7}+y_{8}+y_{9}+y_{10}+y_{11}=1$
- Column 5: $y_{1}+y_{7}+y_{12}+y_{16}=1$
- Column 6: $y_{2}+y_{8}+y_{13}+y_{17}=1$
- Column 12: $y_{6}+y_{11}+y_{15}+y_{18}=1$

Express symmetric function
$S_{1}\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right)=$
$\left[y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}=1\right]$ in CNF.
One of the simplest ways to express the symmetric Boolean function S_{1} as an AND of ORs is to use $1+\binom{p}{2}$ clauses:

1	$1.1 \ldots$.
1	$.1 .1 \ldots$
1	$\ldots 1.1 \ldots$
1	$\ldots 1.1 \ldots$
1	$\ldots \ldots 1.1$.
1	$\ldots \ldots 1.1$
2	$1 \ldots 1 \ldots$
2	$.1 \ldots 1 \ldots$
2	$\ldots 1 \ldots 1 \ldots$
2	$\ldots 1 \ldots 1$.
2	$\ldots .1$
3	$1 \ldots 1 \ldots$
3	$.1 \ldots 1 \ldots$
3	$\ldots 1 \ldots 1$.
	$3 \ldots 1 \ldots 1$
	$41 \ldots 1 \ldots$
3	$4.1 \ldots 1$.
	$4 \ldots 1 \ldots .1$

"At least one of the y 's is true, but not two." Then (12) becomes, in shorthand,

Coloring a graph. The classical problem of coloring a graph with at most d colors is another rich source of benchmark examples for SAT solvers. If the graph has n vertices V, we can introduce $n d$ variables v_{j}, for $v \in V$ and $1 \leq j \leq d$, signifying that v has color j; the resulting clauses are quite simple:

Coloring a graph. The classical problem of coloring a graph with at most d colors is another rich source of benchmark examples for SAT solvers. If the graph has n vertices V, we can introduce $n d$ variables v_{j}, for $v \in V$ and $1 \leq j \leq d$, signifying that v has color j; the resulting clauses are quite simple:
$\left(v_{1} \vee v_{2} \vee \cdots \vee v_{d}\right)$ for $v \in V$ ("every vertex has at least one color"); (15)
($\bar{u}_{j} \vee \bar{v}_{j}$) for $u-v, 1 \leq j \leq d$ ("adjacent vertices have different colors"). (16)

Coloring a graph. The classical problem of coloring a graph with at most d colors is another rich source of benchmark examples for SAT solvers. If the graph has n vertices V, we can introduce $n d$ variables v_{j}, for $v \in V$ and $1 \leq j \leq d$, signifying that v has color j; the resulting clauses are quite simple:
$\left(v_{1} \vee v_{2} \vee \cdots \vee v_{d}\right)$ for $v \in V$ ("every vertex has at least one color");
($\bar{u}_{j} \vee \bar{v}_{j}$) for $u-v, 1 \leq j \leq d$ ("adjacent vertices have different colors"). (16)
We could also add $n\binom{d}{2}$ additional so-called exclusion clauses
$\left(\bar{v}_{i} \vee \bar{v}_{j}\right)$ for $v \in V, 1 \leq i<j \leq d$ ("every vertex has at most one color");
but they're optional, because vertices with more than one color are harmless.

Factoring integers. Next on our agenda is a family of SAT instances with quite a different flavor. Given an $(m+n)$-bit binary integer $z=\left(z_{m+n} \ldots z_{2} z_{1}\right)_{2}$, do there exist integers $x=\left(x_{m} \ldots x_{1}\right)_{2}$ and $y=\left(y_{n} \ldots y_{1}\right)_{2}$ such that $z=x \times y$? For example, if $m=2$ and $n=3$, we want to invert the binary multiplication

$$
\begin{array}{rlrl}
y_{3} y_{2} y_{1} & & z_{1} & =a_{1} \tag{22}\\
\times \begin{aligned}
& x_{2} x_{1} \\
& a_{3} a_{2} a_{1}\left(a_{3} a_{2} a_{1}\right)_{2}
\end{aligned} & =\left(y_{3} y_{2} y_{1}\right)_{2} \times x_{1} & \left(c_{1} z_{2}\right)_{2} & =a_{2}+b_{1} \\
b_{3} b_{2} b_{1} \\
\frac{{ }_{3}}{c_{2} c_{1}} & \left(b_{3} b_{2} b_{1}\right)_{2}=\left(y_{3} y_{2} y_{1}\right)_{2} \times x_{2} & \left(c_{2} z_{3}\right)_{2} & =a_{3}+b_{2}+c_{1} \\
5_{4} z_{4} z_{3} z_{2} z_{1} & & \left(c_{3} z_{4}\right)_{2} & =b_{3}+c_{2} \\
z_{5} & =c_{3}
\end{array}
$$

when the z bits are given. This problem is satisfiable when $z=21=(10101)_{2}$, in the sense that suitable binary values $x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}$, c_{2}, c_{3} do satisfy these equations. But it's unsatisfiable when $z=19=(10011)_{2}$.

Factoring integers. Next on our agenda is a family of SAT instances with quite a different flavor. Given an $(m+n)$-bit binary integer $z=\left(z_{m+n} \ldots z_{2} z_{1}\right)_{2}$, do there exist integers $x=\left(x_{m} \ldots x_{1}\right)_{2}$ and $y=\left(y_{n} \ldots y_{1}\right)_{2}$ such that $z=x \times y$? For example, if $m=2$ and $n=3$, we want to invert the binary multiplication

$$
\begin{array}{rlrl}
y_{3} y_{2} y_{1} & & z_{1} & =a_{1} \tag{22}\\
\times \frac{x_{2} x_{1}}{a_{3} a_{2} a_{1}} & \left(a_{3} a_{2} a_{1}\right)_{2}=\left(y_{3} y_{2} y_{1}\right)_{2} \times x_{1} & \left(c_{1} z_{2}\right)_{2} & =a_{2}+b_{1} \\
\frac{b_{3} b_{2} b_{1}}{c_{3}} c_{2} c_{1} & \left(b_{3} b_{2} b_{1}\right)_{2}=\left(y_{3} y_{2} y_{1}\right)_{2} \times x_{2} & \left(c_{2} z_{3}\right)_{2} & =a_{3}+b_{2}+c_{1} \\
\frac{c_{3}}{z_{5} z_{4} z_{3} z_{2} z_{1}} & & \left(c_{3} z_{4}\right)_{2} & =b_{3}+c_{2} \\
z_{5} & =c_{3}
\end{array}
$$

when the z bits are given. This problem is satisfiable when $z=21=(10101)_{2}$, in the sense that suitable binary values $x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}$, c_{2}, c_{3} do satisfy these equations. But it's unsatisfiable when $z=19=(10011)_{2}$.
Express as a Boolean Chain (Section 7.1.2) ...
One such chain, if we identify a_{1} with z_{1} and c_{3} with z_{5}, is

$$
\begin{array}{lllll}
z_{1} \leftarrow x_{1} \wedge y_{1}, & b_{1} \leftarrow x_{2} \wedge y_{1}, & z_{2} \leftarrow a_{2} \oplus b_{1}, & s \leftarrow a_{3} \oplus b_{2}, & z_{3} \leftarrow s \oplus c_{1}, \\
z_{4} \leftarrow b_{3} \oplus c_{2}, \\
a_{2} \leftarrow x_{1} \wedge y_{2}, & b_{2} \leftarrow x_{2} \wedge y_{2}, & c_{1} \leftarrow a_{2} \wedge b_{1}, & p \leftarrow a_{3} \wedge b_{2}, & q \leftarrow s \wedge c_{1}, \tag{23}\\
a_{5} \leftarrow b_{3} \wedge c_{2}, \\
a_{3} \leftarrow x_{1} \wedge y_{3}, & b_{3} \leftarrow x_{2} \wedge y_{3}, & & & c_{2} \leftarrow p \vee q,
\end{array}
$$

$\underline{\text { using a "full adder" to compute } c_{2} z_{3} \text { and "half adders" to compute } c_{1} z_{2} \text { and } c_{3} z_{4}}$

Express Boolean Chain in CNF using Tseytin encoding.
One such chain, if we identify a_{1} with z_{1} and c_{3} with z_{5}, is

$$
\begin{array}{lllll}
z_{1} \leftarrow x_{1} \wedge y_{1}, & b_{1} \leftarrow x_{2} \wedge y_{1}, & z_{2} \leftarrow a_{2} \oplus b_{1}, & s \leftarrow a_{3} \oplus b_{2}, & z_{3} \leftarrow s \oplus c_{1}, \\
z_{4} \leftarrow b_{3} \oplus c_{2}, \\
a_{2} \leftarrow x_{1} \wedge y_{2}, & b_{2} \leftarrow x_{2} \wedge y_{2}, & c_{1} \leftarrow a_{2} \wedge b_{1}, & p \leftarrow a_{3} \wedge b_{2}, & q \leftarrow s \wedge c_{1}, \\
a_{3} \leftarrow z_{5} \leftarrow b_{3} \wedge c_{2}, \tag{23}\\
a_{3}, & b_{3} \leftarrow x_{2} \wedge y_{3}, & & c_{2} \leftarrow p \vee q, & (23)
\end{array}
$$

using a "full adder" to compute $c_{2} z_{3}$ and "half adders" to compute $c_{1} z_{2}$ and $c_{3} z_{4}$ $t \leftarrow u \wedge v$ becomes $(u \vee \bar{t}) \wedge(v \vee \bar{t}) \wedge(\bar{u} \vee \bar{v} \vee t)$;
$t \leftarrow u \vee v$ becomes $(\bar{u} \vee t) \wedge(\bar{v} \vee t) \wedge(u \vee v \vee \bar{t})$;
$t \leftarrow u \oplus v$ becomes $(\bar{u} \vee v \vee t) \wedge(u \vee \bar{v} \vee t) \wedge(u \vee v \vee \bar{t}) \wedge(\bar{u} \vee \bar{v} \vee \bar{t})$.
$\underline{\left(x_{1} \vee \bar{z}_{1}\right) \wedge\left(y_{1} \vee \bar{z}_{1}\right) \wedge\left(\bar{x}_{1} \vee \bar{y}_{1} \vee z_{1}\right) \wedge \cdots \wedge\left(\bar{b}_{3} \vee \bar{c}_{2} \vee \bar{z}_{4}\right) \wedge\left(b_{3} \vee \bar{z}_{5}\right) \wedge\left(c_{2} \vee \bar{z}_{5}\right) \wedge\left(\bar{b}_{3} \vee \bar{c}_{2} \vee z_{5}\right)}$

Express Boolean Chain in CNF using Tseytin encoding.
One such chain, if we identify a_{1} with z_{1} and c_{3} with z_{5}, is

$$
\begin{array}{lllll}
z_{1} \leftarrow x_{1} \wedge y_{1}, & b_{1} \leftarrow x_{2} \wedge y_{1}, & z_{2} \leftarrow a_{2} \oplus b_{1}, & s \leftarrow a_{3} \oplus b_{2}, & z_{3} \leftarrow s \oplus c_{1}, \\
z_{4} \leftarrow b_{3} \oplus c_{2}, \\
a_{2} \leftarrow x_{1} \wedge y_{2}, & b_{2} \leftarrow x_{2} \wedge y_{2}, & c_{1} \leftarrow a_{2} \wedge b_{1}, & p \leftarrow a_{3} \wedge b_{2}, & q \leftarrow s \wedge c_{1}, \tag{23}\\
a_{5} \leftarrow b_{3} \wedge c_{2}, \\
a_{3} \leftarrow x_{1} \wedge y_{3}, & b_{3} \leftarrow x_{2} \wedge y_{3}, & & & c_{2} \leftarrow p \vee q,
\end{array}
$$

using a "full adder" to compute $c_{2} z_{3}$ and "half adders" to compute $c_{1} z_{2}$ and $c_{3} z_{4}$ $t \leftarrow u \wedge v$ becomes $(u \vee \bar{t}) \wedge(v \vee \bar{t}) \wedge(\bar{u} \vee \bar{v} \vee t)$;
$t \leftarrow u \vee v$ becomes $(\bar{u} \vee t) \wedge(\bar{v} \vee t) \wedge(u \vee v \vee \bar{t})$;
$t \leftarrow u \oplus v$ becomes $(\bar{u} \vee v \vee t) \wedge(u \vee \bar{v} \vee t) \wedge(u \vee v \vee \bar{t}) \wedge(\bar{u} \vee \bar{v} \vee \bar{t})$.
$\overline{\left(x_{1} \vee \bar{z}_{1}\right) \wedge\left(y_{1} \vee \bar{z}_{1}\right) \wedge\left(\bar{x}_{1} \vee \bar{y}_{1} \vee z_{1}\right) \wedge \cdots \wedge\left(\bar{b}_{3} \vee \bar{c}_{2} \vee \bar{z}_{4}\right) \wedge\left(b_{3} \vee \bar{z}_{5}\right) \wedge\left(c_{2} \vee \bar{z}_{5}\right) \wedge\left(\bar{b}_{3} \vee \bar{c}_{2} \vee z_{5}\right)}$

How do we obtain a CNF formula satisfiable iff $z=(10101)_{2}$ can be factored into x and y ?

Guess that Boolean function!

$f\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ is an unknown Boolean function that evaluates to 1 or 0 on the tabulated points.

VALUES TAKEN ON BY AN UNKNOWN FUNCTION

Cases where $f(x)=1$
Cases where $f(x)=0$

$x_{1} x_{2} x_{3} x_{4}$	x_{5}	$x_{6} x_{7}$	$x_{8} x_{9}$				\cdots	
1	1	0	0	1	0	0	1	0

$x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8}$	x_{9}				\ldots					x_{20}									
1	0	1	0	1	1	0	1	1	1	1	1	1	0	0	0	0	1	0	1
0	1	0	0	0	1	0	1	1	0	0	0	1	0	1	0	0	0	1	0
1	0	1	1	1	0	1	1	0	1	0	0	1	0	1	0	1	0	0	1
1	0	1	0	1	0	1	0	1	1	1	1	1	1	0	1	1	1	0	0
0	1	0	1	0	1	1	0	0	0	1	0	0	0	0	0	0	0	1	0
0	1	1	1	0	0	1	1	1	1	0	1	0	0	1	1	1	1	0	0
1	1	1	1	0	0	0	1	1	1	0	1	1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0	0	1	0	1	1	0	0	0	0	0	1	1
1	1	0	0	1	1	1	0	0	0	1	0	1	1	0	1	0	0	1	1
0	1	1	0	1	0	0	1	0	1	0	1	1	0	1	0	1	0	0	1
1	1	1	0	0	0	0	1	0	0	1	1	0	1	1	0	0	1	0	0
0	0	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0
0	0	1	1	0	0	1	1	1	1	1	1	1	0	1	1	1	1	0	0
1	1	0	0	1	0	0	1	0	0	1	1	1	0	0	1	1	1	0	1
1	1	0	0	1	1	1	0	0	0	1	0	0	1	0	0	1	0	0	1
1	0	1	1	0	0	1	1	1	1	1	0	1	1	1	1	1	0	0	1

almost immediately that a very simple formula is consistent with all of the data:

$$
f\left(x_{1}, \ldots, x_{20}\right)=\bar{x}_{2} \bar{x}_{3} \bar{x}_{10} \vee \bar{x}_{6} \bar{x}_{10} \bar{x}_{12} \vee x_{8} \bar{x}_{13} \bar{x}_{15} \vee \bar{x}_{8} x_{10} \bar{x}_{12}
$$

Guess that Boolean function!

$f\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ is an unknown Boolean function that evaluates to 1 or 0 on the tabulated points.

VALUES TAKEN ON BY AN UNKNOWN FUNCTION

Cases where $f(x)=1$
Cases where $f(x)=0$

			01									1					0	
		10	01															
			01		0	0								0	0			
		0	01	11	10													
		1	00			10												
			01															
	11	01	10	00	0	01	10	0				0	0					
			0		0	0												
		00	01	10	01	10	0	01				1						
		0	00															
			01	10	01	1	11											
			00			1												
	0	0	11	10	01	11	1											
		01	0															
		11	11	10	0	01												
		100	0	00	0	0												

| $x_{1} x_{2} x_{3} x_{4}$ | $x_{5} x_{6}$ | x_{7} | x_{8} | x_{9} | | | | \ldots | | | | | | x_{20} | | | | | |
| :--- |
| 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| |

almost immediately that a very simple formula is consistent with all of the data:

$$
f\left(x_{1}, \ldots, x_{20}\right)=\bar{x}_{2} \bar{x}_{3} \bar{x}_{10} \vee \bar{x}_{6} \bar{x}_{10} \bar{x}_{12} \vee x_{8} \bar{x}_{13} \bar{x}_{15} \vee \bar{x}_{8} x_{10} \bar{x}_{12}
$$

Problem: find a DNF formula on M terms that agrees with the tabulated data.

This formula was discovered by constructing clauses in $2 M N$ variables $p_{i, j}$ and $q_{i, j}$ for $1 \leq i \leq M$ and $1 \leq j \leq N$, where M is the maximum number of terms allowed in the DNF (here $M=4$) and where

$$
\begin{equation*}
p_{i, j}=\left[\text { term } i \text { contains } x_{j}\right], \quad q_{i, j}=\left[\text { term } i \text { contains } \bar{x}_{j}\right] \tag{28}
\end{equation*}
$$

If the function is constrained to equal 1 at P specified points, we also use auxiliary variables $z_{i, k}$ for $1 \leq i \leq M$ and $1 \leq k \leq P$, one for each term at every such point.

This formula was discovered by constructing clauses in $2 M N$ variables $p_{i, j}$ and $q_{i, j}$ for $1 \leq i \leq M$ and $1 \leq j \leq N$, where M is the maximum number of terms allowed in the DNF (here $M=4$) and where

$$
\begin{equation*}
p_{i, j}=\left[\text { term } i \text { contains } x_{j}\right], \quad q_{i, j}=\left[\text { term } i \text { contains } \bar{x}_{j}\right] \tag{28}
\end{equation*}
$$

If the function is constrained to equal 1 at P specified points, we also use auxiliary variables $z_{i, k}$ for $1 \leq i \leq M$ and $1 \leq k \leq P$, one for each term at every such point.

Table 2 says that $f(1,1,0,0, \ldots, 1)=1$, and we can capture this specification by constructing the clause

$$
\begin{equation*}
\left(z_{1,1} \vee z_{2,1} \vee \cdots \vee z_{M, 1}\right) \tag{29}
\end{equation*}
$$

together with the clauses

$$
\begin{equation*}
\left(\bar{z}_{i, 1} \vee \bar{q}_{i, 1}\right) \wedge\left(\bar{z}_{i, 1} \vee \bar{q}_{i, 2}\right) \wedge\left(\bar{z}_{i, 1} \vee \bar{p}_{i, 3}\right) \wedge\left(\bar{z}_{i, 1} \vee \bar{p}_{i, 4}\right) \wedge \cdots \wedge\left(\bar{z}_{i, 1} \vee \bar{q}_{i, 20}\right) \tag{30}
\end{equation*}
$$

for $1 \leq i \leq M$. Translation: (29) says that at least one of the terms in the DNF must evaluate to true; and (30) says that, if term i is true at the point $1100 \ldots 1$, it cannot contain \bar{x}_{1} or \bar{x}_{2} or x_{3} or x_{4} or \cdots or \bar{x}_{20}.

This formula was discovered by constructing clauses in $2 M N$ variables $p_{i, j}$ and $q_{i, j}$ for $1 \leq i \leq M$ and $1 \leq j \leq N$, where M is the maximum number of terms allowed in the DNF (here $M=4$) and where

$$
\begin{equation*}
p_{i, j}=\left[\text { term } i \text { contains } x_{j}\right], \quad q_{i, j}=\left[\text { term } i \text { contains } \bar{x}_{j}\right] \tag{28}
\end{equation*}
$$

If the function is constrained to equal 1 at P specified points, we also use auxiliary variables $z_{i, k}$ for $1 \leq i \leq M$ and $1 \leq k \leq P$, one for each term at every such point.

Table 2 says that $f(1,1,0,0, \ldots, 1)=1$, and we can capture this specification by constructing the clause

$$
\begin{equation*}
\left(z_{1,1} \vee z_{2,1} \vee \cdots \vee z_{M, 1}\right) \tag{29}
\end{equation*}
$$

together with the clauses

$$
\begin{equation*}
\left(\bar{z}_{i, 1} \vee \bar{q}_{i, 1}\right) \wedge\left(\bar{z}_{i, 1} \vee \bar{q}_{i, 2}\right) \wedge\left(\bar{z}_{i, 1} \vee \bar{p}_{i, 3}\right) \wedge\left(\bar{z}_{i, 1} \vee \bar{p}_{i, 4}\right) \wedge \cdots \wedge\left(\bar{z}_{i, 1} \vee \bar{q}_{i, 20}\right) \tag{30}
\end{equation*}
$$

for $1 \leq i \leq M$. Translation: (29) says that at least one of the terms in the DNF must evaluate to true; and (30) says that, if term i is true at the point $1100 \ldots 1$, it cannot contain \bar{x}_{1} or \bar{x}_{2} or x_{3} or x_{4} or \cdots or \bar{x}_{20}.

Table 2 also tells us that $f(1,0,1,0, \ldots, 1)=0$. This specification corresponds to the clauses

$$
\begin{equation*}
\left(q_{i, 1} \vee p_{i, 2} \vee q_{i, 3} \vee p_{i, 4} \vee \cdots \vee q_{i, 20}\right) \tag{31}
\end{equation*}
$$

for $1 \leq i \leq M$. (Each term of the DNF must be zero at the given point; thus either \bar{x}_{1} or x_{2} or \bar{x}_{3} or x_{4} or \cdots or \bar{x}_{20} must be present for each value of i.)

