
Homework #1.

• 3.1. This is the binomial expansion

1 = ((1 + x) + (−x))n =
∑

k

(
n

k

)
(−x)k(1 + x)n−k.

• 3.9. We use below the identity
(

n−1
k−1

)
= k

n

(
n
k

)
, which is valid so long as n is a non-zero

integer. Each sum below is summed over integer k.

0 =

(
1− 1

1 + nx

)n

−
(

1− 1

1 + nx

)n

=

(
1− 1

1 + nx

)n

− nx

1 + nx

(
1− 1

1 + nx

)n−1

=
∑(

n

k

)
(−1)k

(1 + nx)k
− nx

1 + nx

∑(
n− 1

k

)
(−1)k

(1 + nx)k

=
∑(

n

k

)
(−1)k

(1 + nx)k
+

nx

1 + nx

∑ (
n− 1

k − 1

)
(−1)k

(1 + nx)k−1

=
∑(

n

k

)
(−1)k

(1 + nx)k
+

nx

1 + nx

∑ k

n

(
n

k

)
(−1)k

(1 + nx)k−1

=
∑(

n

k

)
(−1)k

(1 + nx)k
+ x

∑
k

(
n

k

)
(−1)k

(1 + nx)k

=
∑(

n

k

)
(1 + kx)(−1)k

(1 + nx)k
.

For part (d) simply halve the number of occurrences of each element selected.

• 3.10. This one is quite straight forward.
(∑

k≥0

x2k

)n

=

(
1

1− x2

)n

=
∑

k≥0

(−n

k

)
(−x)2k =

∑

k≥0

(
n + k − 1

k

)
x2k

• 3.41.

(a) Classify the selections according to whether n is selected or not. If it is not selected
then we still have to select k element from the remaining n, but circularity does not
matter any more so there are f(n− 1, k) ways to select. If n is selected then n− 1 and
1 cannot be selected; we still then need to select k − 1 elements from the remaining
n− 3; again circularity will not matter so the number of ways is f(n− 3, k − 1).

(b) Use part (b) of Exercise 3.40 and some algebra.
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• 3.23. We proceed by induction on n to prove that Fn+1Fn−1 − F 2
n = (−1)n. If n = 2

then F3F1 − F 2
2 = 2− 1 = +1. Otherwise,

(−1)n = Fn+1Fn−1 − F 2
n

= Fn+1(Fn+1 − Fn)− F 2
n

= F 2
n+1 − Fn+1Fn − F 2

n

= F 2
n+1 − (Fn+2 − Fn)Fn − F 2

n

= F 2
n+1 − Fn+2Fn + F 2

n − F 2
n

= F 2
n+1 − Fn+2Fn

• Extra Question. The solution to the question is

T (n, k) =
k

2n− k

(
2n− k

n− k

)
.

Cycle Lemma and Shepherd Principle:
Think of T(n, k) as the set of bitstrings of the form 1k0bk+2 · · · b2n with n 1’s, n 0’s
and satisfying the property that there are at least as many 1’s as 0’s in any prefix (the
prefix property). Observe that the string is such a possible suffix if and only if

a1a2 · · · a2n−k−1 = b2n · · · bk+2

satisfies that same prefix property. Now consider the string 1a1 · · · a2n−k−1. It contains
n 1’s, n−k 0’s and is characterized by the property that every prefix has more 1’s than
0’s (the strong prefix property). We count the number of such strings using the cycle
lemma. The total number of bitstrings with n 1’s and n− k 0’s is

(
2n−k
n−k

)
. By the cycle

lemma we multiply by the fraction k/(2n − k) to get the number of such bitstrings
that satisfy the strong prefix property. Note that we can not argue (as was done in
class) that each equivalence class under rotations has the same number of elements.
For example, if n = 6 and k = 4 then the equivalence class of A = 110110 has 3 distinct
strings but the equivalence class of B = 111100 has 6 distinct strings. However, there
is one valid starting point for A and 2 valid starting points for B, so the fraction is the
same in either case.

Reflection Principle:

We can think of T (n, k) as the number of increasing walks on the integer lattice that
start at (0, 0) end at (n − 1, n − k) and that stay below the diagonal thru the points
(−1, 0) and (0, 1). There are

(
2n−k−1

n−k

)
unrestricted increasing walks. The number of

walks that intersect the diagonal can be determined by reflecting the them about their
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last intersection with the diagonal. Such walks start at the origin and terminate at
(n− k − 1, n). Thus

t(n, k) =

(
2n− k − 1

n− k

)
−

(
2n− k − 1

n− k − 1

)
=

k

2n− k

(
2n− k

n− k

)
.

Generating Functions:

T (x, y) =
∑
n≥0

∑

k≥0

t(n, k)xnyk

=
∑
n≥0

∑

k≥0

∑
ν1+ν2+···+νk=n

νi≥1

Cν1Cν2 · · ·Cνk
xnyk

=
∑

k≥0

yk

(∑
ν≥1

Cνx
ν

)k

=
∑

k≥0

(y(G(x)− 1))k

=
1

1− y(G(x)− 1)
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