
Homework #5.

• 6.10. (a) Let π = (1 2 · · · n). The length of the cycle containing i in πk is the smallest
value j such that

j︷ ︸︸ ︷
πk(πk(· · · πk(i) · · · )) = πjk(i) = i.

Since π(i) = i+1 mod n, we have i+ jk = i mod n, and hence jk = 0 mod n. In other
words, j is the smallest non-zero number for which jk = 0 mod n. This quantity is
independent of i and thus all cycles have the same length.

(b) Let j be the common cycle size in a regular permutation ρ, and let p = n/j. Define
acp to be the element in cycle c with position p. Define a circular permutation π whose
elements are

π = (a11, a21, · · · , aj1, . . . , a1p, a2p, . . . , ajp).

Clearly, πj = ρ.

(c) By the Cauchy formula, Theorem 72,

∑

d|n

n!

d!(n/d)d
.

(d) Let ρ = (1 2 · · · n). Clearly, any permutation commutes with powers of itself. Now
suppose that ρπ = πρ for some π ∈ Sn. For x ∈ {1, 2, . . . , n}, note that xρπ = (x+1)π
and xπρ = xπ+1, with addition (here and below) done mod n. Thus (x+1)π = xπ+1
and hence π is determined by the value of y = 1π in the sense that we must have

π =

(
1 2 · · · n
y y+1 · · · y+n−1

)
.

This proves what we want, namely π = ρy−1.

• 6.40. The parity of a j-cycle is equal to the parity of j− 1. The parity of the product
of cycles is equal to the product of their parities (whether they are disjoint or not).
Thus the parity of a permutation of specification 1a12a2 · · ·nan is

n∑
j=1

(j − 1)aj =
∑

j even

aj (mod 2).

• 6.46. Note that a1 + · · ·+an is the number of disjoint cycles in a permutation of spec-
ification 1a12a2 · · ·nan . Thus n! times the sum is equal to the number of permutations
in Sn with an even number of disjoint cycles minus the number with an odd number
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of disjoint cycles. Denote by ρ(π) the number of cycles in permutation π. Consider
the multiplication of a permutation π by the transposition τ = (x y). If x and y are
in the same cycle c in π, then in τπ the cycle c is split into two cycles, one containing
x and the other containing y (and the rest of the permutation unchanged), and thus
ρ(τπ) = ρ(π) + 1. Conversely, if they are in different cycles in π, then in τπ those
two cycles are coalesced into a single cycle containing both x and y (and the rest of
the permutation unchanged), and thus ρ(τπ) = ρ(π) − 1. Thus multiplication by τ
changes the number of cycles ±1 and is therefore a sign-reversing involution without
fixed points. Therefore the signed sum is zero.

• 6.47. Recall again that a1 + · · ·+ an is the number of disjoint cycles in a permutation.
Thus, multiplying by n!, the sum must be the ordinary generating function of the
number of permutations with a given number of cycles. I.e.,

∑
π∈Sn

xρ(π) =
∑

a1+2a2+···+nan=n

n!

a1!a2! · · · an!1a12a2 · · ·nan
xa1+a2+···+an

=
n∑

k=1

[
n

k

]
xk

= (−1)n

n∑

k=1

(−1)n−k

[
n

k

]
(−x)k

= (−1)n(−x)(−x− 1) · · · (−x− n + 1)

= x(x + 1) · · · (x + n− 1)

= n!

(
x + n− 1

n

)

= 〈tn〉 1

(1− t)x

The fourth equality is from the definition of the
[
n
k

]
numbers on page 118 of the text.

• 6.58. (a) Imagine the cube sitting on a table. There are 6 choices for the top face.
Once the top face is fixed there are 4 possible choices for the face that faces you. Once
that face is fixed, the entire cube is fixed. Thus there are 4 · 6 = 24 orientations.

(b) We classify the 24 group elements according to the possible axes of rotation. An axis
of rotation passes through either opposite edges, opposite faces, or opposite vertices.
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identity edges faces vertices
(1)(2)(3)(4)(5)(6) (16)(24)(35) (1624) (163)(245)

(14)(26)(35) (1426) (136)(254)
(13)(25)(46) (3456) (134)(256)
(15)(23)(46) (3654) (143)(265)
(12)(34)(56) (1325) (156)(234)
(12)(36)(45) (1523) (165)(243)

(12)(46) (154)(236)
(35)(46) (145)(263)
(12)(35)

• 6.59. This can be solved by the shepherd principle, but we do it with Burnside’s lemma.
The group G under consideration consists of permutations of all 6! colorings of the cube
by 6 distinct colours. There are 24 such permutations by problem 58. However, note
that none of them except the identity leave any coloring fixed. Thus λ1(g) = 6![[g = I]]
and so by Burnside’s Lemma the number of orbits (distinct colourings) is

1

24

∑
g∈G

λ1(g) =
6!

24
= 30.

• 6.60. The group elements from question 58 have the following cycle structures and
frequencies of occurence and number of cycles:

g freq. λ(g)
16 1 6
23 6 3

1241 6 3
1222 3 4
32 8 2

By Polya’s theorem we want to expand

1

24

[
(x + y)6 + 6(x3 + y3)2 + 6(x + y)2(x4 + y4) + 3(x + y)2(x2 + y2)2 + 8(x3 + y3)2

]

which is then equal to

G(x, y) = x6 + x5y + 2x4y2 + 2x3y3 + 2x2y4 + xy5 + y6.

The answer to (a) is 2 = 〈x3y3〉G(x, y), the answer to (b) is 2 = 〈x2y4〉G(x, y).

(d) By Theorem 78, the number of such colourings is

1

|G|
∑
g∈G

xλ(g) =
1

24
[x6 + 3x4 + 12x3 + 8x2]

(c) Plugging in x = 2 into (d) gives the answer 10.
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