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1. Match the items on the right with the most closely corresponding item on the left by
putting a letter in the “answer” column. [10 marks]

left item answer right item
A Lagrange inversion D binomial expansion

B de Bruijn sequence J a(n,m) ≤ a(n−1,m) + a(n,m−1)

C necklace E
(

n+k−1
k

)

D (1 + z)n I a(n, m) = a(n−1,m−1) + ma(n,m−1)

E 1/(1− z)n B 00010111

F e−z/(1−z) A y = x(1 + y3)

G ((1−z)(1−z5)(1−z10)(1−z25))−1 C 0000,0001,0011,0101,0111,1111

H (1−√1− 4z)/(2z) H ordered forests

I Stirling number F derangements

J Ramsey number G making change

2. Let P (n) be the set of all ways of arranging the integers 1, 2, . . . , 2n subject to the constraint
that 2i− 1 is to the left of 2i in the arrangement. (a) How many such arrangements are
there? (b) Give a sign-reversing involution that shows that the number of arrangements
with an even number of inversions minus the number with an odd number of inversions is
n!. [6 marks]

ANSWER:

(a) The constraint is equivalent to making 2i − 1 and 2i into the same symbol; thus we
have n pairs of identical symbols from which to make the arrangement. Thus

|P (n)| =
(

2n

2, 2, . . . , 2

)
=

(2n)!

2n
= n!(2n− 1)(2n− 3) · · · 3 · 1.

(b) Let φ be the involution that, given an arrangement π1π2 · · · π2n, reverses the first pair
π2i−1π2i such that {π2i−1, π2i} 6= {2j− 1, 2j} for any j = 1, 2, . . . , n. A fixed point occurs if
there is no such pair. The fixed points all have the form 2x1−1, 2x1, 2x2−1, 2x2, . . . , 2xn−
1, 2xn, for some permutation x1, x2, . . . , xn of 1, 2, . . . , n. Thus there are n! of them. We
must show that they all have even parity. Observe that cdab has 4 inversions (as compared
with abcd). Since any fixed point can be transformed into any other by a series of such
moves, they all have even parity.



April 2005 MATH 422/522 (S01), 3

3. Let A(n) denote the set of sequences of non-negative integers a(1), a(2), . . . , a(n) with the
property that a(j) < j and a(j − a(j)) = 0 for j = 1, 2, . . . , n. For example, A(3) =

{000, 001, 002, 010, 012}. Show that
{

n
m

}
is the number of sequences in A(n) where exactly

m values 1 ≤ j ≤ n satisfy a(j) = 0. [5 marks]

ANSWER:

Proof #1: Let j1, j2, · · · , jm be the positions for which a(j) = 0. Now define the i-th
block of a partition B1, B2, · · · , Bm of {1, 2, . . . , n} to be the set

Bi = {k : k − a(k) = ji}.

This rule gives a one-to-one correspondence between our sequences and partitions of an
n-set into m blocks, which we know have cardinality

{
n
m

}
.

Proof #2: Let a(n,m) be the number of sequences in A(n) where exactly m values
1 ≤ j ≤ n satisfy a(j) = 0. Consider the value of a(n). If a(n) = 0 then there are
a(n−1,m−1) choices for a(1), a(2), . . . , a(n−1). If a(n) > 0 then n−a(n) must be one of
the m values j for which a(j) = 0 (otherwise, a(n− a(n)) 6= 0). Thus there are m choices
for a(n) and so m a(n− 1,m) ways this case can happen. Hence

a(n,m) = a(n− 1,m− 1) + m a(n− 1,m),

which is the same recurrence relation that the
{

n
m

}
numbers satisfy. Thus the numbers are

the same if they have the same initial conditions, which is easy to check.

4. Use the pigeon-hole principle to prove the following statement. For any n positive integers
{a1, a2, . . . , an}, the sum of some of these integers (perhaps one of the numbers itself) is
divisible by n. HINT: a1, a1 + a2, a1 + a2 + a3, etc. [5 marks]

ANSWER: Let sk = a1 + a2 + · · · + ak. If some sk is divisible by n (i.e., sk ≡ 0 mod n),
then we are done. Otherwise, sk mod n ∈ {1, 2, . . . , n − 1}. Since there are n numbers
{s1, s2, . . . , sn} and n − 1 possible values for sk mod n, by the pigeon-hole principle some
two of them must be congruent mod n, say si ≡ sj mod n, where i < j. But then
sj − si = xi+1 + · · ·+ xj ≡ 0 mod n as required.
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5. In this question we consider the number of solutions to the equation

x1 + x2 + · · ·+ xk = n

subject to various constraints. For each set of constraints below, state the number of
solutions in as simple a form as possible. Use p(n, k) to denote the number of partitions of
n into k parts. Avoid summations if possible for full marks. For a constraint involving i it
must hold for i = 1, 2, . . . , k. [12 marks]

constraint answer

xi ∈ {0, 1}
(

k
n

)

xi ∈ {0, 1, . . . , n}
(

k+n−1
n

)

xi ∈ {1, 2, . . . , n}
(

n−1
n−k

)
=

(
n−1
k−1

)

0 ≤ x1 ≤ x2 ≤ · · · ≤ xk p(n + k, k)

0 < x1 < x2 < · · · < xk p(n−
(

k
2

)
, k)

xi ≥ 0 and x1 + · · ·+ xi < i k−n
k+n

(
k+n

k

)
=

(
k+n−1

k−1

)
−

(
k+n−1

k

)

6. (a) Use inclusion-exclusion to derive a formula for an the number of permutations of
{1, 2, . . . , n} such that j and j + 1 are never adjacent for j = 1, 2, . . . , n− 1. [5 marks] For
example, if n = 3 then the permutations are 132, 213, 321.

(b) What is the exponential generating function of the numbers bn = an+1? [5 marks]

ANSWER: This problem is very similar to the derangements problem. (a) Given a permu-
tation, let k be the size of a set of values j for which j and j + 1 are adjacent. The total
number of such permutations is

(
n−1

k

)
(n− k)! (since j 6= n). Thus, by inclusion-exclusion,

an =
n∑

k=0

(−1)k

(
n− 1

k

)
(n− k)!.

(b)

∑

n≥0

bn
zn

n!
=

∑

n≥0

∑

k≥0

(
n

k

)
(−1)k(n + 1− k)!

zn

n!

=


∑

n≥0

(−1)n zn

n!





∑

n≥0

(n + 1)!
zn

n!




=
e−z

(1− z)2

The last equality follows from:

∑

n≥0

(n + 1)zn =
∑

n≥0

nzn−1 =
d

dz

∑

n≥0

zn =
d

dz

1

1− z
=

1

(1− z)2
.
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7. What binomial coefficient identity arises from the equation shown below. [6 marks]

(1− z2)n = (1− z)n(1 + z)n.

ANSWER: Expanding the left-hand side:

(1− z2)n =
n∑

k=0

(−1)k

(
n

k

)
z2k =

∑

k≥0

[[k is even]](−1)k/2

(
n

k/2

)
zk.

Expanding the right-hand side:

(1− z)n(1 + z)n =
∑

k≥0

(−1)k

(
n

k

)
zk

∑

k≥0

(
n

k

)
zk

=
∑

k≥0

∑

j≥0

(−1)j

(
n

j

)(
n

k − j

)
zk

Equating coefficients, we obtain

∑

j≥0

(−1)j

(
n

j

)(
n

k − j

)
= [[k is even]](−1)k/2

(
n

k/2

)

8. Explain why, for any n ≥ 1,

nn
∑

λ1+2λ2+···+nλn=n
λi≥0

(
n∏

k=1

λk!k
λk

)−1

= n!
∑

ν1+ν2+···+νn=n
νi≥0

(
n∏

k=1

νk!

)−1

.

HINT: No need to write any equation, the two expressions should look familiar. [4 marks]

ANSWER: The summation on the left-hand side is equal to n! by the Cauchy formula
(Theorem 72). The summation on the right-hand side is equal to nn by the multinomial
expansion of (1 + 1 + · · ·+ 1︸ ︷︷ ︸

n

)n.
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9. On your last homework you justified a formula equivalent to

Z(S[2]
p ) =

1

p!

∑

(j)

p!∏
kjkjk!

p∏

k=1

s
(k−1)jk

k

∏

1≤r<t≤p

s
2(r,t)jrjt

[r,t]

p∏

r=1

srjr(jr−1)
r

for the number of unlabelled digraphs, where (r, t) = gcd(r, t), [r, t] = lcm(r, t) and (j)
denotes the set of partitions of p. (a) What is the corresponding formula for the number of
unlabelled digraphs where loops are allowed. A loop is an edge of the form (v, v). (b) Use
the formulas to determine the total number of unlabelled digraphs for p = 4, both with
loops and without loops. [HINT: Compute Z(S[2]

p , 2) instead of Z(S[2]
p , 1 + x).] [5 marks]

ANSWER: (a) Obviously the vertices of a loop lie in only one cycle. Instead of having
k− 1 cycles of length k, we now have k cycles of length k. Thus the formula is the exactly
the same, except that the (k − 1) in the product

∏p
k=1 s

(k−1)jk

k above becomes k.

S4 no-loops loops
14 s12

1 s16
1

1221 6s2
1s

5
2 6s4

1s
6
2

22 3s6
2 3s8

2

1131 8s4
3 8s1

1s
5
3

41 6s3
4 6s4

4

For no-loops we get

1

24
(212 + 6 · 27 + 3 · 26 + 8 · 24 + 6 · 23) = 218.

For loops we get

1

24
(216 + 6 · 210 + 3 · 28 + 8 · 26 + 6 · 24) = 3044.
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10. A rooted tree is planted if it is embedded in the plane. The subtrees incident with the root
can rotate around the root, but all other subtrees are ordered. Let pn denote the number
of planted rooted trees with n nodes. [10 marks]

(a) List the 10 planted rooted trees with 5 nodes.

(b) If Cm is the cyclic group on m elements, what is Z(Cm)?

(c) Let B(z) be the generating function for ordered trees. In terms of Z(Cm) and B(z)
what is

P (z) =
∑

n≥1

pnz
n =

(d) Extra Credit: Give a simple (can involve one sum, but no generating functions) ex-
pression for pn?

ANSWER: (a)

(b) If σ = (1 2 · · · m), then σk consists of d = gcd(m, k) cycles, each of length m/d. Thus

Z(Cm) =
1

m

n∑

k=1

s
gcd(m,k)
m/ gcd(m,k) =

1

m

∑

d|m
φ(d)s

m/d
d .

(c) A plane rooted tree consists of a single node, or is a root and circular collection of m
ordered trees for some m ≥ 1. Thus

P (z) = z + z
∑

m≥1

Z(Cm, B(z)) = z + z
∑

m≥1

1

m

∑

d|m
φ(d)B(zd)m/d.

(d) This takes some work, but the eventual answer is

pn+1 =
1

2n

∑

d|n
φ(n/d)

(
2d

d

)
.


