UNIVERSITY OF VICTORIA EXAMINATIONS APRIL 2005 MATHEMATICS 422/522 (S01)

NAME: <u>I.M. Solution</u> INSTRUCTOR: Frank Ruskey STUDENT NO. <u>0123456</u> SECTION: S01 DURATION: 3 Hours

TO BE ANSWERED ON THE PAPER

STUDENTS MUST COUNT THE NUMBER OF PAGES IN THIS EXAMINATION PAPER BE-FORE BEGINNING TO WRITE, AND REPORT ANY DISCREPANCY IMMEDIATELY TO THE INVIGILATOR.

THIS QUESTION PAPER HAS 10 PAGES.

NOTES: (0) CLOSED BOOK EXAM; NO NOTES OR CALCULATORS ALLOWED, (1) AN-SWER ALL QUESTIONS, (2) THERE ARE A TOTAL OF 73 MARKS, (3) SCRATCH PAPER IS AVAILABLE FROM THE INVIGILATORS, BUT NOTE THAT THERE IS BLANK PAGE AT THE END.

Question	Possible marks	Actual marks
1	10	
2	6	
3	5	
4	5	
5	12	
6	10	
7	6	
8	4	
9	5	
10	10	
Total	73	

1. Match the items on the right with the most closely corresponding item on the left by putting a letter in the "answer" column. [10 marks]

	left item	answer	right item
А	Lagrange inversion	D	binomial expansion
В	de Bruijn sequence	J	$a(n,m) \le a(n-1,m) + a(n,m-1)$
С	necklace	Е	$\binom{n+k-1}{k}$
D	$(1+z)^n$	Ι	a(n,m) = a(n-1,m-1) + ma(n,m-1)
Е	$1/(1-z)^n$	В	00010111
F	$e^{-z}/(1-z)$	А	$y = x(1+y^3)$
G	$((1-z)(1-z^5)(1-z^{10})(1-z^{25}))^{-1}$	С	0000,0001,0011,0101,0111,1111
Η	$(1-\sqrt{1-4z})/(2z)$	Н	ordered forests
Ι	Stirling number	F	derangements
J	Ramsey number	G	making change

Let P(n) be the set of all ways of arranging the integers 1, 2, ..., 2n subject to the constraint that 2i - 1 is to the left of 2i in the arrangement. (a) How many such arrangements are there? (b) Give a sign-reversing involution that shows that the number of arrangements with an even number of inversions minus the number with an odd number of inversions is n!. [6 marks]

ANSWER:

(a) The constraint is equivalent to making 2i - 1 and 2i into the same symbol; thus we have n pairs of identical symbols from which to make the arrangement. Thus

$$|P(n)| = \binom{2n}{2, 2, \dots, 2} = \frac{(2n)!}{2^n} = n!(2n-1)(2n-3)\cdots 3\cdot 1.$$

(b) Let ϕ be the involution that, given an arrangement $\pi_1 \pi_2 \cdots \pi_{2n}$, reverses the first pair $\pi_{2i-1}\pi_{2i}$ such that $\{\pi_{2i-1}, \pi_{2i}\} \neq \{2j-1, 2j\}$ for any $j = 1, 2, \ldots, n$. A fixed point occurs if there is no such pair. The fixed points all have the form $2x_1 - 1, 2x_1, 2x_2 - 1, 2x_2, \ldots, 2x_n - 1, 2x_n$, for some permutation x_1, x_2, \ldots, x_n of $1, 2, \ldots, n$. Thus there are n! of them. We must show that they all have even parity. Observe that *cdab* has 4 inversions (as compared with *abcd*). Since any fixed point can be transformed into any other by a series of such moves, they all have even parity.

3. Let A(n) denote the set of sequences of non-negative integers $a(1), a(2), \ldots, a(n)$ with the property that a(j) < j and a(j - a(j)) = 0 for $j = 1, 2, \ldots, n$. For example, $A(3) = \{000, 001, 002, 010, 012\}$. Show that $\binom{n}{m}$ is the number of sequences in A(n) where exactly m values $1 \le j \le n$ satisfy a(j) = 0. [5 marks]

ANSWER:

Proof #1: Let j_1, j_2, \dots, j_m be the positions for which a(j) = 0. Now define the *i*-th block of a partition B_1, B_2, \dots, B_m of $\{1, 2, \dots, n\}$ to be the set

$$B_i = \{k : k - a(k) = j_i\}.$$

This rule gives a one-to-one correspondence between our sequences and partitions of an n-set into m blocks, which we know have cardinality $\binom{n}{m}$.

Proof #2: Let a(n,m) be the number of sequences in A(n) where exactly m values $1 \leq j \leq n$ satisfy a(j) = 0. Consider the value of a(n). If a(n) = 0 then there are a(n-1,m-1) choices for $a(1), a(2), \ldots, a(n-1)$. If a(n) > 0 then n-a(n) must be one of the m values j for which a(j) = 0 (otherwise, $a(n-a(n)) \neq 0$). Thus there are m choices for a(n) and so $m \ a(n-1,m)$ ways this case can happen. Hence

$$a(n,m) = a(n-1,m-1) + m \ a(n-1,m),$$

which is the same recurrence relation that the $\binom{n}{m}$ numbers satisfy. Thus the numbers are the same if they have the same initial conditions, which is easy to check.

4. Use the pigeon-hole principle to prove the following statement. For any *n* positive integers $\{a_1, a_2, \ldots, a_n\}$, the sum of some of these integers (perhaps one of the numbers itself) is divisible by *n*. HINT: $a_1, a_1 + a_2, a_1 + a_2 + a_3$, etc. [5 marks]

ANSWER: Let $s_k = a_1 + a_2 + \cdots + a_k$. If some s_k is divisible by n (i.e., $s_k \equiv 0 \mod n$), then we are done. Otherwise, $s_k \mod n \in \{1, 2, \ldots, n-1\}$. Since there are n numbers $\{s_1, s_2, \ldots, s_n\}$ and n-1 possible values for $s_k \mod n$, by the pigeon-hole principle some two of them must be congruent mod n, say $s_i \equiv s_j \mod n$, where i < j. But then $s_j - s_i = x_{i+1} + \cdots + x_j \equiv 0 \mod n$ as required.

5. In this question we consider the number of solutions to the equation

 $x_1 + x_2 + \dots + x_k = n$

subject to various constraints. For each set of constraints below, state the number of solutions in as simple a form as possible. Use p(n, k) to denote the number of partitions of n into k parts. Avoid summations if possible for full marks. For a constraint involving i it must hold for i = 1, 2, ..., k. [12 marks]

constraint	answer	
$x_i \in \{0, 1\}$	$\binom{k}{n}$	
$x_i \in \{0, 1, \dots, n\}$	$\binom{k{+}n{-}1}{n}$	
$x_i \in \{1, 2, \dots, n\}$	$\binom{n-1}{n-k} = \binom{n-1}{k-1}$	
$0 \le x_1 \le x_2 \le \dots \le x_k$	p(n+k,k)	
$0 < x_1 < x_2 < \dots < x_k$	$p(n - {k \choose 2}, k)$	
$x_i \ge 0$ and $x_1 + \dots + x_i < i$	$\frac{k-n}{k+n}\binom{k+n}{k} = \binom{k+n-1}{k-1} - \binom{k+n-1}{k}$	

- 6. (a) Use inclusion-exclusion to derive a formula for a_n the number of permutations of $\{1, 2, \ldots, n\}$ such that j and j + 1 are never adjacent for $j = 1, 2, \ldots, n 1$. [5 marks] For example, if n = 3 then the permutations are 132, 213, 321.
 - (b) What is the exponential generating function of the numbers $b_n = a_{n+1}$? [5 marks]

ANSWER: This problem is very similar to the derangements problem. (a) Given a permutation, let k be the size of a set of values j for which j and j + 1 are adjacent. The total number of such permutations is $\binom{n-1}{k}(n-k)!$ (since $j \neq n$). Thus, by inclusion-exclusion,

$$a_n = \sum_{k=0}^n (-1)^k \binom{n-1}{k} (n-k)!.$$

(b)

$$\sum_{n\geq 0} b_n \frac{z^n}{n!} = \sum_{n\geq 0} \sum_{k\geq 0} {n \choose k} (-1)^k (n+1-k)! \frac{z^n}{n!}$$
$$= \left(\sum_{n\geq 0} (-1)^n \frac{z^n}{n!} \right) \left(\sum_{n\geq 0} (n+1)! \frac{z^n}{n!} \right)$$
$$= \frac{e^{-z}}{(1-z)^2}$$

The last equality follows from:

$$\sum_{n \ge 0} (n+1)z^n = \sum_{n \ge 0} nz^{n-1} = \frac{d}{dz} \sum_{n \ge 0} z^n = \frac{d}{dz} \frac{1}{1-z} = \frac{1}{(1-z)^2}.$$

7. What binomial coefficient identity arises from the equation shown below. [6 marks]

$$(1-z^2)^n = (1-z)^n (1+z)^n.$$

ANSWER: Expanding the left-hand side:

$$(1-z^2)^n = \sum_{k=0}^n (-1)^k \binom{n}{k} z^{2k} = \sum_{k\ge 0} \llbracket k \text{ is even} \rrbracket (-1)^{k/2} \binom{n}{k/2} z^k.$$

Expanding the right-hand side:

$$(1-z)^n (1+z)^n = \sum_{k\geq 0} (-1)^k \binom{n}{k} z^k \sum_{k\geq 0} \binom{n}{k} z^k$$
$$= \sum_{k\geq 0} \sum_{j\geq 0} (-1)^j \binom{n}{j} \binom{n}{k-j} z^k$$

Equating coefficients, we obtain

$$\sum_{j\geq 0} (-1)^j \binom{n}{j} \binom{n}{k-j} = \llbracket k \text{ is even} \rrbracket (-1)^{k/2} \binom{n}{k/2}$$

8. Explain why, for any $n \ge 1$,

$$n^n \sum_{\substack{\lambda_1+2\lambda_2+\dots+n\lambda_n=n\\\lambda_i\geq 0}} \left(\prod_{k=1}^n \lambda_k! k^{\lambda_k}\right)^{-1} = n! \sum_{\substack{\nu_1+\nu_2+\dots+\nu_n=n\\\nu_i\geq 0}} \left(\prod_{k=1}^n \nu_k!\right)^{-1}.$$

HINT: No need to write any equation, the two expressions should look familiar. [4 marks] ANSWER: The summation on the left-hand side is equal to n! by the Cauchy formula (Theorem 72). The summation on the right-hand side is equal to n^n by the multinomial expansion of $(1+1+\cdots+1)^n$.

$$\widetilde{n}$$

9. On your last homework you justified a formula equivalent to

$$Z(S_p^{[2]}) = \frac{1}{p!} \sum_{(j)} \frac{p!}{\prod k^{j_k} j_k!} \prod_{k=1}^p s_k^{(k-1)j_k} \prod_{1 \le r < t \le p} s_{[r,t]}^{2(r,t)j_r j_t} \prod_{r=1}^p s_r^{rj_r(j_r-1)}$$

for the number of unlabelled digraphs, where (r, t) = gcd(r, t), [r, t] = lcm(r, t) and (j) denotes the set of partitions of p. (a) What is the corresponding formula for the number of unlabelled digraphs where loops are allowed. A *loop* is an edge of the form (v, v). (b) Use the formulas to determine the total number of unlabelled digraphs for p = 4, both with loops and without loops. [HINT: Compute $Z(S_p^{[2]}, 2)$ instead of $Z(S_p^{[2]}, 1+x)$.] [5 marks]

ANSWER: (a) Obviously the vertices of a loop lie in only one cycle. Instead of having k-1 cycles of length k, we now have k cycles of length k. Thus the formula is the exactly the same, except that the (k-1) in the product $\prod_{k=1}^{p} s_k^{(k-1)j_k}$ above becomes k.

S_4	no-loops	loops
1^{4}	s_1^{12}	s_1^{16}
$1^{2}2^{1}$	$6s_1^2s_2^5$	$6s_1^4s_2^6$
2^2	$3s_{2}^{6}$	$3s_{2}^{8}$
$1^{1}3^{1}$	$8s_{3}^{4}$	$8s_1^1s_3^5$
4^{1}	$6s_{4}^{3}$	$6s_{4}^{4}$

For no-loops we get

$$\frac{1}{24}(2^{12} + 6 \cdot 2^7 + 3 \cdot 2^6 + 8 \cdot 2^4 + 6 \cdot 2^3) = 218.$$

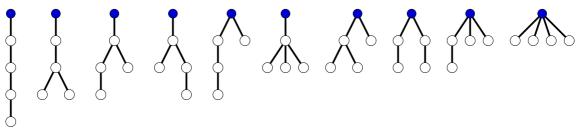
For loops we get

$$\frac{1}{24}(2^{16} + 6 \cdot 2^{10} + 3 \cdot 2^8 + 8 \cdot 2^6 + 6 \cdot 2^4) = 3044.$$

- 10. A rooted tree is *planted* if it is embedded in the plane. The subtrees incident with the root can rotate around the root, but all other subtrees are ordered. Let p_n denote the number of planted rooted trees with n nodes. [10 marks]
 - (a) List the 10 planted rooted trees with 5 nodes.
 - (b) If C_m is the cyclic group on *m* elements, what is $Z(C_m)$?
 - (c) Let B(z) be the generating function for ordered trees. In terms of $Z(C_m)$ and B(z) what is

$$P(z) = \sum_{n \ge 1} p_n z^n =$$

(d) Extra Credit: Give a simple (can involve one sum, but no generating functions) expression for p_n ?



(b) If $\sigma = (1 \ 2 \ \cdots \ m)$, then σ^k consists of $d = \gcd(m, k)$ cycles, each of length m/d. Thus

$$Z(C_m) = \frac{1}{m} \sum_{k=1}^n s_{m/\gcd(m,k)}^{\gcd(m,k)} = \frac{1}{m} \sum_{d|m} \phi(d) s_d^{m/d}.$$

(c) A plane rooted tree consists of a single node, or is a root and circular collection of m ordered trees for some $m \ge 1$. Thus

$$P(z) = z + z \sum_{m \ge 1} Z(C_m, B(z)) = z + z \sum_{m \ge 1} \frac{1}{m} \sum_{d|m} \phi(d) B(z^d)^{m/d}.$$

(d) This takes some work, but the eventual answer is

$$p_{n+1} = \frac{1}{2n} \sum_{d|n} \phi(n/d) \binom{2d}{d}.$$