
Logical Architecture and 
UML Package Diagrams



The Large-Scale
• At this level, the 

design of a typical 
OO system is 
based on several 
architectural 
layers, such as 
– UI layer, 
– Application logic 

(or "domain") 
layer, 

– Technical 
Services

Domain

UI

Swing
not the Java 
Swing libraries, but 
our GUI classes 
based on Swing

Web

Sales Payments Taxes

Technical Services

Persistence Logging RulesEngine



Layers
• Layer is a coarse-grained grouping of classes, packages, or subsystems that 

has cohesive (strongly related) responsibilities for a major aspect of the 
system. 

– E.g. Application Logic and Domain Objects— software objects representing 
domain concepts (for example, a software class Sale) that fulfill application 
requirements, such as calculating a sale total.

• Application layer is the focus of Use Cases.

• Higher layers (such as UI layer) call upon services of lower layers, but not 
normally vice versa. 

• In a strict layered architecture, a layer only calls upon the services of the 
layer directly below it. 

– Common in network protocols
• But not in information systems, which have a relaxed layered architecture, 

in which a higher layer calls upon several lower layers. 
– For example, UI layer may call upon its directly subordinate application logic 

layer, and also upon elements of a lower technical service layer, for logging and 
so forth.



Software Architecture
• A software architecture is

– the set of significant decisions about the organization of a 
software system, 

– the selection of the structural elements and their interfaces 
by which the system is composed, 

– together with their behavior as specified in the 
collaborations among those elements, and 

– the composition of these structural and behavioral elements 
into progressively larger subsystems.



UML Package Diagrams

Domain::Sales

UI::WebUI::Swing

Sales

WebSwing

UI

Domain

DomainUI

Swing SalesWeb

Alternate notations for the same thing

“Depends on”



Problems when not using layers
• Application logic is intertwined with the user 

interface, so 
– it cannot be reused with a different interface or distributed 

to another processing node.
• General technical services are intertwined with 

application-specific logic, so they 
– cannot be reused, 
– distributed to another node, or 
– easily replaced with a different implementation.

• There is high coupling across different areas of 
concern. 
– It is thus difficult to divide the work along clear boundaries 

for different developers.



Mapping Code Organization to 
Layers and UML Packages

// --- UI Layer

com.mycompany.nextgen.ui.swing
com.mycompany.nextgen.ui.web

// --- DOMAIN Layer

// packages specific to the NextGen project
com.mycompany.nextgen.domain.sales
com.mycompany.nextgen.domain.payments

// --- TECHNICAL SERVICES Layer

// our home-grown persistence (database) access layer
com.mycompany.service.persistence

// third party
org.apache.log4j
org.apache.soap.rpc

// --- FOUNDATION Layer

// foundation packages that our team creates
com.mycompany.util

To support cross-project 
reuse, we avoid using a 

specific application 
qualifier ("nextgen") in the 

package names unless 
necessary. 

The UI packages are related 
to the NextGen POS 

application, so they are 
qualified with the 
application name 
…nextgen.ui.*. 

But utilities could be shared 
across many projects, hence 

the package 
com.mycompany.utils, not 
com.mycompany.nextgen.utils



Relationship Between the Domain 
Layer and Domain Model

Payment

amount

Sale

date
time

Pays-for

Payment

amount: Money

getBalance(): Money

Sale

date: Date
startTime: Time

getTotal(): Money
. . .

Pays-for

UP Domain Model
Stakeholder's view of the noteworthy concepts in the domain.

Domain layer of the architecture in the UP Design Model
The object-oriented developer has taken inspiration from the real world domain 
in creating software classes. 

Therefore, the representational gap between how stakeholders conceive the 
domain, and its representation in software, has been lowered.

1 1

1 1

A Payment in the Domain Model 
is a concept, but a Payment in 
the Design Model is a software 
class. They are not the same 
thing, but the former inspired the 
naming and definition of the 
latter.

This reduces the representational 
gap.

This is one of the big ideas in 
object technology.

inspires 
objects 

and 
names in



Layers and Partitions
• Layers of an architecture represent the vertical slices, while 

partitions represent a horizontal division of relatively 
parallel subsystems of a layer. 
– E.g., Technical Services layer may be divided into partitions such 

as Security and Reporting.

Persistence Security Logging

Technical Services

POS Inventory Tax

Domain

Vertical Layers

Horizontal Partitions



Model-View Separation Principle
• Model is a synonym for the domain layer of objects (it's an old 

OO term from the late 1970s). 
• View is a synonym for UI objects, such as windows, Web pages, 

applets, and reports.

Principle: 
• Model (domain) objects should not have direct knowledge of view 

(UI) objects. 
– E.g. Register or Sale objects should not directly send a message to a GUI 

window object ProcessSaleFrame, asking it to display something, change 
color, close, and so forth.

History:
• Pattern Model-View-Controller (MVC) originally a small-scale 

Smalltalk-80 pattern. 
• The Model is the Domain Layer, the View is the UI Layer, and the

Controllers are the workflow objects in the Application layer.



Further part of this principle
• Domain classes encapsulate the information and 

behavior related to application logic. 
• Window classes are thin; they are responsible for 

– input and output, and 
– catching GUI events, 

• Window classes do not maintain application data or 
directly provide application logic. E.g., 
– A Java JFrame window or a Web JSP page should not have 

a method that does a tax calculation. 

• These UI elements should delegate to non-UI 
elements for such responsibilities.



Legitimate relaxation
• Observer pattern, where domain objects can send 

messages to UI objects viewed only in terms of an 
interface such as PropertyListener (a common Java 
interface for this situation). 

• Then, the domain object doesn't know that the UI 
object is a UI object—it doesn't know its concrete 
window class. It only knows the object as something 
that implements the PropertyListener interface.



Motivation for M-V Separation 
• To allow separate development of the model and user 

interface layers.
• To minimize the impact of requirements changes in 

the interface upon the domain layer.
• To allow new (multiple simultaneous) views to be 

easily connected to an existing domain layer, without 
affecting the domain layer.

• To allow execution of the model layer independent of 
the user interface layer, such as in a batch-mode 
system.



Connection between SSDs and Layers
• SSDs illustrate system operations, but hide the specific UI objects.
• Nevertheless, it will be objects in the UI layer of the system that 

capture these system operation requests.
– UI layer objects will then forward—or delegate—the request from the UI 

layer onto the domain layer for handling.

Domain

UI

Swing

ProcessSale
Frame...

... Register

makeNewSale()
enterItem()
...

: Cashier

makeNewSale()
enterItem()
endSale()

makeNewSale()
enterItem()
endSale()

enterItem(id, quantity)

:System
: Cashier

endSale()

description, total

makeNewSale()

the system operations handled by the system in an SSD represent the 
operation calls on the Application or Domain layer from the UI layer


	Logical Architecture and UML Package Diagrams
	The Large-Scale
	Layers
	Software Architecture
	UML Package Diagrams
	Problems when not using layers
	Mapping Code Organization to Layers and UML Packages
	Relationship Between the Domain Layer and Domain Model
	Layers and Partitions
	Model-View Separation Principle
	Further part of this principle
	Legitimate relaxation
	Motivation for M-V Separation 
	Connection between SSDs and Layers

