Dynamic G f’C!r)f Connectivity Ir
polylogarithmic worst case ti

me

Graph with n nodes
Sequence of online updates and I
gueries

Update: Insert {A,D}

>
o

Update: Delete edge {E,F}

QUERY(X,Y): Is there a path between .
X and Y?

How to avoid O(m) cost of

recomputing spanning forest
with each update or running
O(m) search for each query?

m=number of edges

A Simple problem , but lots of
intferesting ideas....

carly 60's-70's: partially dynamic amortized:
o insertions only:
Union-find; Tarjan's a(m,n) analysis
o 1981: edge deletions only Even O(mn)
Fully Dynamic (Update times)

01983: O(Vm) worst case Fredrickson

01992,7: O(/n) Sparsification Eppstein, Galil,
Ttaliano, Nissenzweig

POLYLOG Amortized time updates
Update time / Query time
01995 0(log®n) / Oflog n/log log n).
(expected time) Henzinger, King

01998 Oflog?n) / Oflog n/log log n)

Holm, de Lichtenberg, Thorup
02000 Oflogn (loglogn)3) / O(log n
log log log n)
Thorup

All with B(n) worst case update time

SODA 2013:

O(log®°n) worst case update time
O(log n/log log n) query time
1-sided error:

"Yes" always correct
"No" prob. 1/n¢ error

~ All known

=]

techniques rely on
“maintaining a

Dynamic Trees (ET-trees, H-K 1995)

Dynamic Trees (ET-trees, H-K 1995)

weights on nodes

Dynamic Trees (ET-trees, H-K 1995)
‘} @ 5
— @)

N
@

23

Dynamic Trees (ET-trees, H-K 1995)

Query: Find tree containing node C
Query: Return sum of wts in tree

‘ O(log n) per update & query

P e
e e 0

We maintain a spanning forest

When tree edge is deleted, how
to find replacement edge?

Here, bitwiseXOR method:

v={1.2,..n}
Form the name of {a,b}, a<b:
a (as a Ig n bit number) followed by
b (as a Ig n bit number)
“cabs”

For each node a, keep a vector of bits v(a),
v(a)=bitwise XOR of names <ab> of edges

For any cut (S, V\S), if there is exactly
one edge {x,y} in its cutset then
XOR,ins V(a) = <xy>

Example:

001010

v(a)

001010

() (2

001010 011111

000010

000000

110000

XOR of v(a) = 001010
in S + 011111
=010101

= XOR of v(a) in V-S

001010

() (2

001010 011111

Dealing with larger cutsefts

To insert:

« Add <ab> to v(a,i) and v(b,i) with prob. 1/2/,
for i=0.,2,..,2lg n

» Keep record of additions for each a and i.

To delete: Add again if it was added before

Dealing with larger cutsets

To insert:

« Add <ab> to v(a,i) and v(b,i) with prob. 1/2',
for i=0.,2,..,2lg n

» Keep record of additions for each a and i.

To delete: Add again if it was added before

Observe: C cutset of (S,V-S). Fori~lg |C],
Pr[Adding an edge {a,b} in C to v(a,i)]~=1/|C]
and
Pr[Exactly one edge in C was added to some v(a,i)
=Pr[bitwiseXOR, ., s v(a,i) = name of edge in C]

= a const.

Dealing with larger cutsets

To insert:

« Add <ab> to v(a,i) and v(b,i) with prob. 1/2/,
for i=0.,2,..,2lg n

» Keep record of additions for each aand i.

To delete: Add again if it was added before

Observe:

C cutset of (S,V-S). Fori~Ig |C|,
PrbitwiseXOR, .. sV(a,i) = edge in C] = a const.
Repeat for log n versions. Then for some

version, the name of exactly one edge in C appears
with prob 1-1/n¢

Over a seguence of updates: | =

Union bound gives small error over
polynomial length sequence, provided
the choice of updates are independent
of the random bits

Record enables incremental rebuilding
and periodic correction of data
structure to maintain prob. of error.

Solution to dynamic connectivitye?¢
(not quite) -

Problems:
A. Can't let adversary know the spanning tree

edges

B. Adversary sees answers to queries
--Update sequence is independent of random
bits while all queries correctly answered, as
they are then determined by the graph itself.

C. Choice of cut searched depends on random
itsl

XOR method solves easier problem:
"CUTSET" DataStructure (DS)

Maintain a forest F of dynamic disjoint trees in
graph G:

Updates: insert-edge, delete-edge,
insert-tree- edge, delete-tree-edge.

Query (S) returns an edge in the cutset
(S, V\S)

Updates are independent of random bits.

Maintain spanning forest using
Cutset DS; 1=0...Ig n =TOP

Random bits from Cutset DS, used to pick
edges in F;,; joining trees from F,

"Tier i+1 edge”

Query(T k) returns a k+1 edge if it exists

AAAA AAAA

INVARIANTS:

-Structure of F; is independent of random
bits from tiers i and higher.

-Every tree on tier i is matched (linked) to
another tree on tier i by a tier i+l edge
unless it's maximal in G

- spanning forest by TOP tier

Initially, all F; are singleton nodes

FYYITIYIYIN
YYYIIIYX.

P ePePeeeee &

Insert edge: insert into all Cutset DS, N

It edge joins unconnected trees in Fy,
insert edge as tree edge info all

@ 0000000 ¢
0000000 ¢

P EPeeEeee &

Delete edge: delete from all Cutset DS,

Restore Invariants using Cutset DS

Example: F,

Example: F,

eeecccce e

Deletion of a fier 1 edge:

Deletion: If unmatched tree Tin
tier 1, find new edge in Cut (T,V-T)
and insert into all F, 1">]

é o

B
@ o

BUut new tree edge may cause
an unmatched free on a

Unmafched free in F,

FARW N

A/

Delete (x,y)

Delete(x, y)

remove {x,y} from all CutSet, containing it.

for u in {x,y} do
while u has an unmatched ancestor in the
Boruvka free do
A <the lowest unmatched ancestor of u
k & (tier of A)
Reconnect(A, k|

Reconnect(A, k)

e = {v.w} €Query(AKk) (assume that v is the
endpoint of e in A)

if e = null then mark A as maximal

else {remove higher edge from F to break cycle}

if fhere is a path from v fo win F,,, then do
e'< maximum tier edge on the path
between v and w.
Remove e’ from all F; that contain it
Add e fo F. forall k' > k

To implement:
“if there is a path from v fo win F, , then do I
e'< maximum tier edge on the path
between v and w.”

Use S-T dynamic trees:
Maintain F;op With edges labeled by their fier

number.
Find maximum weighted edge in path from

v to w, O(log n) per operation.

Other Implementation details:

Use ET-Trees to maintain XOR sums: I

« Oflog?n) size vectors,2>O(log3 n) cost to
change a tree edge

« 2 1iree edges per fier inserted per deletion
« Each edge insertion affects forests in up

to Ig n tiers
« 20((log®n)(2log n)(log n))

--> O(log” n) overall cost per deletion

Space

Record of insertions requires O(m).
Omit by using hash function for
randomness, but then can only be run

for poly time.

See Graph Sketches paper, Ahn,
Guha, McGregor, SODA 2012, which
uses similar ideas to ours, but for o
somewhat different problem.

Open Problems

Reduce update cost: lots of possibilities, or
modify goal to reduced worst case expected

cost.

Is there a Las Vegas or deterministic alg
with polylog worst case time?

Is there a polylog worst case alg. for dynamic
MST?

ICome visit us

o P

v

-

i in Victoria

i Questions?

e

v

1995,98

Fuler Tour Tree

(from Erik Demaine.’s class notes)

Fuler Tour Tree

Euler Tour Tree: augmented
balanced search tree N

RARBCDCECBFBGBR

fmdr'ooT cut, link, sum of node weights in tree

P

Lower Bounds for Dynamic Connectivity

| would like to take a moment to
remember Mihai Patrascu a very
talented young colleague in this area
whom | will miss

July 17,1982-
June 5, 2012

