Teaching mathematics with games and puzzles

Brett Stevens

School of Mathematics and Statistics
Carleton University
1125 Colonel By Dr.
Ottawa ON K1S 5B6
brett@math.carleton.ca

Lights-Out: $[6,7,8,9,11,13,17]$
Shannon Switching Game: [15, 22]
Sudoku: [1, 4, 18, 19, 20]
Tower of Hanoi: [14, 16, 21, 23]
Sliding tiles and rubiks cube: $[5,12,17,24]$
Magic trick: [3, 10]
Tic-Tac-Toe: [2]

References

[1] Lars Døvling Andersen and A. J. W. Hilton. Symmetric Latin square and complete graph analogues of the Evans conjecture. J. Combin. Des., 2(4):197-252, 1994.
[2] Maureen T. Carroll and Steven T. Dougherty. Tic-tac-toe on a finite plane. Math. Mag., 77(4):260-274, 2004.
[3] F. Chung, P. Diaconis, and R. Graham. Universal cycles for combinatorial structures. Discrete Math., 110:43-59, 1992.
[4] C. J. Colbourn and J. H. Dinitz, editors. The CRC Handbook of Combinatorial Designs. CRC Press, Boca Raton, 1996.
[5] Alexander H. Frey, Jr. and David Singmaster. Handbook of cubik math. Enslow Publishers, Hillside, N.J., 1982.
[6] John Goldwasser and William Klostermeyer. Maximization versions of "lights out" games in grids and graphs. In Proceedings of the Twentyeighth Southeastern International Conference on Combinatorics, Graph

Theory and Computing (Boca Raton, FL, 1997), volume 126, pages 99111, 1997.
[7] John Goldwasser, William Klostermeyer, and George Trapp. Characterizing switch-setting problems. Linear and Multilinear Algebra, 43(1-3):121-135, 1997.
[8] John Goldwasser, William Klostermeyer, and Henry Ware. Fibonacci polynomials and parity domination in grid graphs. Graphs Combin., 18(2):271-283, 2002.
[9] John L. Goldwasser and William F. Klostermeyer. Parity dominating sets in grid graphs. Congr. Numer., 172:79-95, 2005. 36th Southeastern International Conference on Combinatorics, Graph Theory, and Computing.
[10] Solomon W. Golomb and Guang Gong. Signal design for good correlation. Cambridge University Press, Cambridge, 2005. For wireless communication, cryptography, and radar.
[11] Markus Hunziker, António Machiavelo, and Jihun Park. Chebyshev polynomials over finite fields and reversibility of σ-automata on square grids. Theoret. Comput. Sci., 320(2-3):465-483, 2004.
[12] David Joyner. Adventures in group theory. Johns Hopkins University Press, Baltimore, MD, 2002. Rubik's cube, Merlin's machine and other mathematical toys.
[13] William F. Klostermeyer and John L. Goldwasser. Odd and even dominating sets with open neighborhoods. unpublished.
[14] Donald E. Knuth. The art of computer programming. Vol. 4, Fasc. 2. Addison-Wesley, Upper Saddle River, NJ, 2005. Generating all tuples and permutations.
[15] Alfred Lehman. A solution of the Shannon switching game. J. Soc. Indust. Appl. Math., 12:687-725, 1964.
[16] Frank Ruskey. Combvinatorial optimization server. http://theory.cs.uvic.ca/root.html , 2006.
[17] Jaap Scherphuis. Jaap's puzzle page. http://www.geocities.com/jaapsch/puzzles/, 2006.
[18] Bohdan Smetaniuk. A new construction on Latin squares. I. A proof of the Evans conjecture. Ars Combin., 11:155-172, 1981.
[19] B. Stevens. Problems and Solutions: Problem 11192. Amer. Math. Monthly, 112(10):930, 2005.
[20] brett stevens. An extension of sudoku. unpublished; available upon request.
[21] Eric W. Weisstein. Tower of hanoi. From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/TowerofHanoi.html , 2006.
[22] D. B. West. Introduction to Graph Theory. Prentice Hall, Upper Saddle River, 1996.
[23] Wikipedia. Tower of hanoi - wikipedia. http://en.wikipedia.org/wiki/Tower_of_Hanoi, 2006.
[24] Richard M. Wilson. Graph puzzles, homotopy, and the alternating group. J. Combinatorial Theory Ser. B, 16:86-96, 1974.

