
1

public class Test

{ int data;

 public Test(int x) { data=x; }

 public void assign(Test b, Test c, int d)

 { data= 2;

 b= new Test(2);

 c.data= 2;

 d=2; }

 public static void main(String [] args)

 { Test a, b, c; int d;

 a= new Test(1); b= new Test(1);

 c= new Test(1); d=1;

 a.assign(b, c, d);

 System.out.println(a.data + " " + b.data + " "

 + c.data + " " + d); } }

What does
this print?

2

public class Test

{

 int data;

 public Test(int x)

 {

 data=x;

 }

 public void assign(Test b, Test c, int d)

 {

 data= 2;

 b= new Test(2);

 c.data= 2;

 d=2;

 }

 public static void main(String [] args)

 {

 Test a, b, c;

 int d;

 a= new Test(1);

 b= new Test(1);

 c= new Test(1);

 d=1;

 a.assign(b, c, d);

 System.out.println(a.data + " " +

 b.data + " " +

 c.data + " " +

 d);

 }

}

 On slides: I may use awkward spacing in order to
allow visibility/increased font size. Please format
your code nicely! Also, include lots of comments!

3

Announcements
The official course outline has been posted.

Any questions about the course?

Make sure you sign the attendance sheet, BUT

do not sign or have anyone else sign for you if
you do not plan to attend the whole class.

Assignment #1A and 1B and Tutorial #1 are
posted. Tutorials start next week.

Bring your schedule to class on Wednesday (to
help me in choosing office hours).

4

You will learn a lot more if you try the problems and get them
wrong than if you do not try. Also, it helps me know where the
class is in terms of understanding.

5

Slide by: Kevin Wayne
Princeton University

6

Review of linked lists

7

How can we split a list into two lists for our
Mergesort?

One solution: evenOddSplit()

Side note: this is not the right way to do it on the
assignment.

Learning objectives: Understanding of how to
program linked lists in Java. To learn how to draw
pictures of what a program is doing as it is
executing (this will help you to more easily write
correct code and to debug code which is not
correct).

8

Testing evenOddSplit:

Walk through some test examples by hand to make sure
you know how to step through code and draw pictures of
what is happening as it is executing.

Programs most often have mistakes with extremal cases.
What happens with lists with 0, 1, and 2 items?

The code is doing different things with even numbered and
odd numbered cells of the list. Does it work properly for
lists of even length? Does it work properly for lists of odd
length?

Fix any bugs you find.

9

Using the data structures for the lab:
class ListNode{

 public int data;
 public ListNode next;

 public ListNode(int x, ListNode ptr)
 {
 data= x;
 next= ptr;
 }
}

10

public class LinkedList
{
 int n;
 ListNode start;
 ListNode rear;

 public LinkedList()
 {
 n= 0;
 start= null;
 rear= null;
 }

11

public class SplitList
{
 LinkedList list1;
 LinkedList list2;

 public SplitList()
 {
 list1= new LinkedList();
 list2= new LinkedList();
 }
}

12

Step through the code in evenOddSplit()

with this example.

13

 public SplitList evenOddSplit()
 { SplitList result;

 result= new SplitList();
 if (start== null) return(result);
 result.list1.start= start;
 result.list1.rear = start;
 result.list1.n++;

 if (start.next == null) return(result);
 result.list2.start= start.next;
 result.list2.rear = start.next;
 result.list2.n++;

Buggy
code

14

 while (result.list2.rear.next!= null)
 {
 result.list1.rear.next= result.list2.rear.next;
 result.list1.rear= result.list2.rear.next;
 result.list1.n++;
 if (result.list1.rear.next != null)
 {
 result.list2.rear.next= result.list1.rear.next;
 result.list2.rear= result.list1.rear.next;
 result.list2.n++;
 }
 }
 result.list1.rear.next= null;

 result.list2.rear.next= null;
 return(result);

15

result= new SplitList();

16

result.list1.start= start;

17

result.list1.rear = start;

18

result.list1.n++;

19

result.list2.start= start.next;
result.list2.rear = start.next;
result.list2.n++;

20

result.list1.rear.next= result.list2.rear.next;

21

result.list1.rear= result.list2.rear.next;
result.list1.n++;

22

result.list2.rear.next= result.list1.rear.next;

23

result.list2.rear= result.list1.rear.next;

24

result.list2.n++;
The while loop now terminates:
while (result.list2.rear.next != null)

25

result.list1.rear.next= null;
result.list2.rear.next= null;

26

return(result);

Redrawing the picture:

27

The code I gave you is
buggy. Try this example to
see what goes wrong. Fix the
program so it works as it
should.

