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Execute the code on 
the next slide 
starting with this 
and determine what 
happens on this 
example. 

Problem of the day: 
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 while (result.list2.rear.next!= null ) 
 { 
   result.list1.rear.next= result.list2.rear.next; 
   result.list1.rear= result.list2.rear.next; 
   result.list1.n++; 
   if (result.list1.rear.next != null) 
   { 
      result.list2.rear.next= result.list1.rear.next; 
      result.list2.rear= result.list1.rear.next; 
      result.list2.n++; 
    } 
 } 
               result.list1.rear.next= null; 

       result.list2.rear.next= null; 
       return(result); 
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 public SplitList evenOddSplit() 
 {    SplitList result; 
       boolean done; 
       result= new SplitList(); 
       if (start== null) return(result); 
       result.list1.start= start; 
       result.list1.rear = start; 
       result.list1.n++; 
 
       if (start.next == null) return(result); 
       result.list2.start= start.next; 
       result.list2.rear = start.next; 
       result.list2.n++; 
       done= false; 

 

Corrected 
code 
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 while (result.list2.rear.next!= null && ! done) 
 { 
   result.list1.rear.next= result.list2.rear.next; 
   result.list1.rear= result.list2.rear.next; 
   result.list1.n++; 
   if (result.list1.rear.next != null) 
   { 
      result.list2.rear.next= result.list1.rear.next; 
      result.list2.rear= result.list1.rear.next; 
      result.list2.n++; 
    } 
    else done= true; 
 }   
               result.list1.rear.next= null; 

       result.list2.rear.next= null; 
       return(result); 
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Assignment #1 A is due Fri. at the beginning of 
class, part B is due Tues. at midnight.  

Recall that you need a 50% assignment average. 
It is better to hand in your best effort than to 
hand in nothing. 

Any questions about the assignment? 
Office hours this week: 
Tues. 12:30 or 2:30 
Wed. 12:30 or 1:30 
Fri.    12:30 or 2:30 
 
Appointments are possible on Thursday but only 
if you have classes at the other times. 
 
Please let me know if you plan to come by. 
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Small typo on 1A: 

 

Question 4 refers to question 3 not question 2. 
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Mathematics of Algorithm Analysis 
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Outline 

• Lower bounds and upper bounds on 
functions. 

• Terminology for talking about the 
amount of time or space that an 
algorithm uses. 



9 Picture from 

http://archives.math.utk.edu/visual.calculus/4/riemann_sums.3/microcalc.html 

The area in the red boxes is a lower bound 
for the area under the yellow curve. 
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Picture from 

http://archives.math.utk.edu/visual.calculus/4/riemann_sums.3/microcalc.html 

The area in the red boxes is an upper bound 
for the area under the yellow curve. 
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The function 2n is a lower bound for 3n, 
and 4n is an upper bound (n ≥ 0). 
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n2 /4           ≤   n (n+1)/2    ≤   n2  for n ≥ 0. 

lower bound                          upper bound 
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Definition: Lower bound.  
A function f(x) is a lower bound for g(x) over a 
range R if for all x in R, f(x) ≤ g(x).  
 
Definition: Upper bound.  
A function f(x) is an upper bound for g(x) over a 
range R if for all x in R, f(x) ≥g(x).  
 
Definition: Optimal. A solution is optimal if it is 
impossible to do better. What "better" means 
depends on the problem situation.  
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Why do we care about lower and upper bounds? 

When analyzing algorithms, it is often easier to 
bound the amount of work done than to compute 
it exactly.  

 

One example: 

1 + 2 + 3 + 4 + … + (n-2) + (n-1) + n. 

We know a closed formula for this: n (n+1)/2. 

But assume for a minute we do not and let’s work 
out some bounds. 
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         n 

A = ∑   ai   
         i=1 

          n 

B = ∑   bi   
         i=1 

        n 

C= ∑   ci   
        i=1 

 

General Technique for bounding a sum: 
Assume ai , bi, and ci ≥ 0 for i= 1, 2, 3, … , n. 

If ai ≤ bi ≤ ci  for i= 1, 2, 3, … n 

then  A ≤  B  ≤ C . 

That is, A is a lower bound for B 

and C is an upper bound for B 
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Example: f(n) = 100 n2, g(n) = n4, the following table and figure show that g(n) grows faster than f(n) when n > 10. We say f is big-Oh of g.  

f(n) = 100 n2 

g(n) = n4  

Example from: 

http://www.cs.odu.edu/~toida/nerzic/content/function/growth.html 
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Assume that T, f are functions mapping the 
natural numbers {0, 1, 2, 3, ...} into the reals.  
 
Definition: “Big Oh” A function T(n) is in O(f(n)) 
if there exist constants n0 ≥ 0, and c > 0, such 
that for all n ≥ n0, T(n) ≤ c * f(n).  
 
 
Important: here I differ from older usage in 
defining O(f(n)) to be a set of functions. This will 
prove useful later.  



18 http://www.cs.odu.edu/~toida/nerzic/content/function/growth.html 

Growth rates of functions 



19 

Big-Oh    Informal name 

O(1)            constant 

O(log n)      logarithmic 

O(n)            linear 

O(n log n)    n log n 

O(n^2)        quadratic 

O(n^3)        cubic 

O(2^n)        exponential 

O(n^c) for constant c,      polynomial time 

 



20 

Assume that T, f and g are functions mapping the 
natural numbers {0, 1, 2, 3, ...} into the reals.  
 
Definition: “Omega” A function T(n) is in Ω(f(n)) 
if there exist constants n0 ≥ 0, and c > 0, such 
that for all n ≥ n0, T(n) ≥ c * f(n).  
 
Definition: “Theta” The set θ(g(n)) of functions 
consists of Ω(g(n))  O(g(n)).  
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1. Prove that  

f(n) =  2 + n + 3n2 + 5 n 3  is in 

(a) O(n3), 

(b) Ω(n3), and 

(c) θ(n3). 

2. Prove that  -10 + 6n is in Ω(n). 
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Prove that  

 k 

Σ 2i     

i=0 

is in  θ(2k). 
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Getting a tight  (optimal) estimate for the 
running time T(n) of an algorithm in the “Big 
Oh sense” means finding g(n) so that T(n) is 
in θ(g(n)).  

To prove that an algorithm for a problem is 
optimal  with respect to Big Oh analysis, 
you need to show:  

1.  The running time T(n) of the algorithm is in 
O(g(n)) for some function g(n),  and 

2.  the runnning times for all algorithms under 
the given computational model must be in 
Ω(g(n)) for at least one input of size n.  
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Logs  

Logs arise often in CSC 225 as an artifact of 
divide and conquer algorithms. 

 Definitions: Logarithms 

For n= 2k, log2(n) = k. 

For n= 10k, log10(n) = k. 

In general: For n= ck, logc(n) = k. 
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Calculus- log conversion formula: 

logb(x) = logc(x) / logc(b)  

 

Theorem: log2(n)  θ(log10(n)) 

 

In CSC 225, the  logs are generally log2 
but this shows in a Big Oh sense it does 
not matter what base it is for an 
expression like “O(n log n)”. 
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Theorem: The function  

f(n)= 1 + 4n + 2 n2  + n3 

is not in the set O(n2). 
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How do we prove that f(n) is not in O(g(n))? 

Tactic: Proof by contradiction 

To show that a statement S(n) is not true: 

1. Assume that S(n) is true. 

2. Apply valid mathematical operations. 

3. Reach a conclusion that is obviously false. 

Since the only thing done which is possibly 
mathematically invalid is to assume that S(n) is 
true, S(n) must be false. 

 


