
1

Execute the code on
the next slide
starting with this
and determine what
happens on this
example.

Problem of the day:

2

 while (result.list2.rear.next!= null)
 {
 result.list1.rear.next= result.list2.rear.next;
 result.list1.rear= result.list2.rear.next;
 result.list1.n++;
 if (result.list1.rear.next != null)
 {
 result.list2.rear.next= result.list1.rear.next;
 result.list2.rear= result.list1.rear.next;
 result.list2.n++;
 }
 }
 result.list1.rear.next= null;

 result.list2.rear.next= null;
 return(result);

3

 public SplitList evenOddSplit()
 { SplitList result;
 boolean done;
 result= new SplitList();
 if (start== null) return(result);
 result.list1.start= start;
 result.list1.rear = start;
 result.list1.n++;

 if (start.next == null) return(result);
 result.list2.start= start.next;
 result.list2.rear = start.next;
 result.list2.n++;
 done= false;

Corrected
code

4

 while (result.list2.rear.next!= null && ! done)
 {
 result.list1.rear.next= result.list2.rear.next;
 result.list1.rear= result.list2.rear.next;
 result.list1.n++;
 if (result.list1.rear.next != null)
 {
 result.list2.rear.next= result.list1.rear.next;
 result.list2.rear= result.list1.rear.next;
 result.list2.n++;
 }
 else done= true;
 }
 result.list1.rear.next= null;

 result.list2.rear.next= null;
 return(result);

5

Assignment #1 A is due Fri. at the beginning of
class, part B is due Tues. at midnight.

Recall that you need a 50% assignment average.
It is better to hand in your best effort than to
hand in nothing.

Any questions about the assignment?
Office hours this week:
Tues. 12:30 or 2:30
Wed. 12:30 or 1:30
Fri. 12:30 or 2:30

Appointments are possible on Thursday but only
if you have classes at the other times.

Please let me know if you plan to come by.

6

Small typo on 1A:

Question 4 refers to question 3 not question 2.

7

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mathematics of Algorithm Analysis

8

Outline

• Lower bounds and upper bounds on
functions.

• Terminology for talking about the
amount of time or space that an
algorithm uses.

9 Picture from

http://archives.math.utk.edu/visual.calculus/4/riemann_sums.3/microcalc.html

The area in the red boxes is a lower bound
for the area under the yellow curve.

10

Picture from

http://archives.math.utk.edu/visual.calculus/4/riemann_sums.3/microcalc.html

The area in the red boxes is an upper bound
for the area under the yellow curve.

11

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The function 2n is a lower bound for 3n,
and 4n is an upper bound (n ≥ 0).

12

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n2 /4 ≤ n (n+1)/2 ≤ n2 for n ≥ 0.

lower bound upper bound

13

Definition: Lower bound.
A function f(x) is a lower bound for g(x) over a
range R if for all x in R, f(x) ≤ g(x).

Definition: Upper bound.
A function f(x) is an upper bound for g(x) over a
range R if for all x in R, f(x) ≥g(x).

Definition: Optimal. A solution is optimal if it is
impossible to do better. What "better" means
depends on the problem situation.

14

Why do we care about lower and upper bounds?

When analyzing algorithms, it is often easier to
bound the amount of work done than to compute
it exactly.

One example:

1 + 2 + 3 + 4 + … + (n-2) + (n-1) + n.

We know a closed formula for this: n (n+1)/2.

But assume for a minute we do not and let’s work
out some bounds.

15

 n

A = ∑ ai
 i=1

 n

B = ∑ bi
 i=1

 n

C= ∑ ci
 i=1

General Technique for bounding a sum:
Assume ai , bi, and ci ≥ 0 for i= 1, 2, 3, … , n.

If ai ≤ bi ≤ ci for i= 1, 2, 3, … n

then A ≤ B ≤ C .

That is, A is a lower bound for B

and C is an upper bound for B

16

Example: f(n) = 100 n2, g(n) = n4, the following table and figure show that g(n) grows faster than f(n) when n > 10. We say f is big-Oh of g.

f(n) = 100 n2

g(n) = n4

Example from:

http://www.cs.odu.edu/~toida/nerzic/content/function/growth.html

17

Assume that T, f are functions mapping the
natural numbers {0, 1, 2, 3, ...} into the reals.

Definition: “Big Oh” A function T(n) is in O(f(n))
if there exist constants n0 ≥ 0, and c > 0, such
that for all n ≥ n0, T(n) ≤ c * f(n).

Important: here I differ from older usage in
defining O(f(n)) to be a set of functions. This will
prove useful later.

18 http://www.cs.odu.edu/~toida/nerzic/content/function/growth.html

Growth rates of functions

19

Big-Oh Informal name

O(1) constant

O(log n) logarithmic

O(n) linear

O(n log n) n log n

O(n^2) quadratic

O(n^3) cubic

O(2^n) exponential

O(n^c) for constant c, polynomial time

20

Assume that T, f and g are functions mapping the
natural numbers {0, 1, 2, 3, ...} into the reals.

Definition: “Omega” A function T(n) is in Ω(f(n))
if there exist constants n0 ≥ 0, and c > 0, such
that for all n ≥ n0, T(n) ≥ c * f(n).

Definition: “Theta” The set θ(g(n)) of functions
consists of Ω(g(n))  O(g(n)).

21

1. Prove that

f(n) = 2 + n + 3n2 + 5 n 3 is in

(a) O(n3),

(b) Ω(n3), and

(c) θ(n3).

2. Prove that -10 + 6n is in Ω(n).

22

Prove that

 k

Σ 2i

i=0

is in θ(2k).

23

Getting a tight (optimal) estimate for the
running time T(n) of an algorithm in the “Big
Oh sense” means finding g(n) so that T(n) is
in θ(g(n)).

To prove that an algorithm for a problem is
optimal with respect to Big Oh analysis,
you need to show:

1. The running time T(n) of the algorithm is in
O(g(n)) for some function g(n), and

2. the runnning times for all algorithms under
the given computational model must be in
Ω(g(n)) for at least one input of size n.

24

Logs

Logs arise often in CSC 225 as an artifact of
divide and conquer algorithms.

 Definitions: Logarithms

For n= 2k, log2(n) = k.

For n= 10k, log10(n) = k.

In general: For n= ck, logc(n) = k.

25

Calculus- log conversion formula:

logb(x) = logc(x) / logc(b)

Theorem: log2(n)  θ(log10(n))

In CSC 225, the logs are generally log2
but this shows in a Big Oh sense it does
not matter what base it is for an
expression like “O(n log n)”.

26

Theorem: The function

f(n)= 1 + 4n + 2 n2 + n3

is not in the set O(n2).

27

How do we prove that f(n) is not in O(g(n))?

Tactic: Proof by contradiction

To show that a statement S(n) is not true:

1. Assume that S(n) is true.

2. Apply valid mathematical operations.

3. Reach a conclusion that is obviously false.

Since the only thing done which is possibly
mathematically invalid is to assume that S(n) is
true, S(n) must be false.

