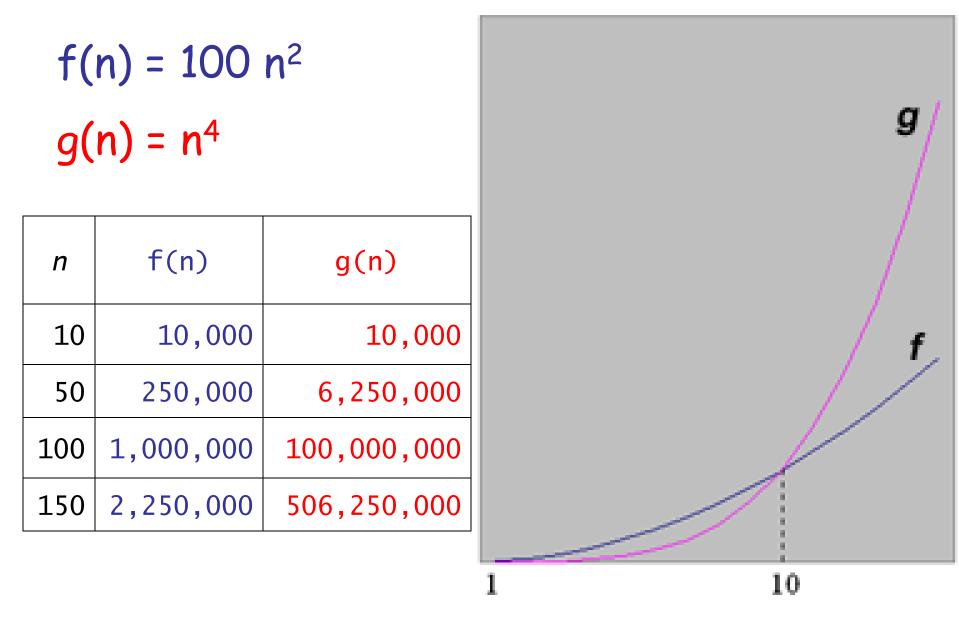
Write down the definition of Big Oh.

Use it to prove that:

1.
$$T(n) = 6n^4 - 60 n^2 + 7 is in O(n^4)$$
.


2. $T(n)= 2^{0}+2^{1}+2^{2}+...+2^{n}$ is in $O(2^{n})$.

Winners will be PAID to develop games that we'll host on csc.uvic.ca

SCRATCH 900 40°

PITCH YOUR SCRATCH PROJECT IDEA FRIDAY SEPTEMBER 27 at 2:30 IN ECS 660

Example from:

http://www.cs.odu.edu/~toida/nerzic/content/function/growth.html

Assume that T, f are functions mapping the natural numbers {0, 1, 2, 3, ...} into the reals.

Definition: "Big Oh" A function T(n) is in O(f(n)) if there exist constants $n_0 \ge 0$, and c > 0, such that for all $n \ge n_0$, $T(n) \le c * f(n)$.

Important: here I differ from older usage in defining O(f(n)) to be a *set* of functions. This will prove useful later.

Big-Oh	Informal nam	e
O(1)	constant	
O(log n)	logarithmic	
O(n)	linear	
O(n log n)	n log n	
O(n^2)	quadratic	
O(n^3)	cubic	
O(2^n)	exponential	
O(n^c) for	r constant c,	poly

Assume that T, f and g are functions mapping the natural numbers $\{0, 1, 2, 3, ...\}$ into the reals.

Definition: "Omega" A function T(n) is in $\Omega(f(n))$ if there exist constants $n_0 \ge 0$, and c > 0, such that for all $n \ge n_0$, $T(n) \ge c * f(n)$.

Definition: "Theta" The set $\Theta(g(n))$ of functions consists of $\Omega(g(n)) \cap O(g(n))$.

Regular Office hours:

Monday: no office hours. TWF: 12:30-1:30 TWF: either 1:30-2:30 if I have no meeting scheduled, or 2:30-3:30 otherwise. The slots for the week will be announced in class or you can ask me by e-mail.

Thursdays: by appointment for students who have classes during the other office hours.

Announcements

Office hours this week:

T 12:30, 2:30

W 12:30, 1:30

F 12:30, 1:30

Please let me know if you plan to attend at one of these. Assignment #2 parts A (due Fri. Oct. 4) and B (due Tues. Oct. 8) are posted. Read through them and let me know if you have any questions.

Relevant sections of text:

1.1: Java review.

1.2-1.3: Programming basics review.

1.4: Algorithm analysis.

We will cover 1.5 later when we do graph algorithms.

Now: Ch. 2: Sorting.

For recurrences/induction: Use a Math 122 text.

For the rest of this lecture, we covered the time complexity of mergesort.