
Use the technique shown in class for 
finding lower and upper bounds for a sum 
to prove that: 
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Announcements 
Start work on Assignment #2 early so you 
can ask for help if you need it. 
 
Assignment 2 Part A: Due Fri. Oct. 4. 
Assignment 2 Part B: Due Tues. Oct. 8. 
Office hours this week: 
F 12:30, 1:30 
 
WECS: CSC Revealed Clinic today at 2:30 in 
ECS 348. Volunteers welcome.  
WECS has an e-mail listserv: sign up? 
http://wecs.csc.uvic.ca/ 
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Quicksort for assignment 2B: 

1. pivot = first big integer value on the list.  

2. Create 3 new lists, List1, List2 and List3.  

3. Traverse the list removing each cell and 

    placing it at the end of the appropriate list:  

          List1: for values less than the pivot.  

          List2: for values equal to the pivot.  

          List3: for values greater than the pivot.  

 4. Sort List1 and List3 recursively.  

 5. The answer is List1 ∘ List2 ∘ List3. 
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public void maxSort(int size) 
{      int i, t, maxPos; 
    
       if (size <= 1) return;   
       maxPos=0; 
       for (i=1; i < size; i++) 
             if (A[i] >= A[maxPos]  ) maxPos=i; 
 
       t= A[maxPos]; 
       A[maxPos]= A[size-1]; 
       A[size-1] = t; 
 
       maxSort(size-1); 
   } 

 



Prove by induction: 
 
maxSort does n(n-1)/2 key comparisons on a 
problem of size n. 
 



Critique this proof that n(n-1)/2 is correct: 
 
Basis (n=0): 0*(0-1)/2=0 so the base case 
holds.  
 
[Induction step] 
Assume 1+2+ … + (n-1)= n(n-1)/2. 
We want to prove that  
1+2+ … + n= (n+1)n/2. 
 
1+2+ … + n  =  [1 + 2 + … + n-1] + n = 
n(n-1)/2 + n= (n+1)n/2 as required. 



If it is a valid proof, how do you distinguish 
it from this “proof” that n(n+1)/2 is 
correct? 
Basis (n=0): 0*(0+1)/2=0 so the base case 
holds.  
 
[Induction step] 
Assume 1+2+ … + n= n(n+1)/2. 
We want to prove that  
1+2+ … + n+  n+1= (n+1)(n+2)/2. 
 
1+2+ … + n + (n+1) =  [1 + 2 + … + n] + (n+1) = 
n(n+1)/2 + n+1= (n+1)(n+2)/2 as required. 



If you are trying to prove something about a 
program (in this case the maxSort method), it is 
critical to discuss the operation of that program 
in your proof. 
 
Don’t be afraid of putting words/explanation into 
your proofs. 
 
Induction proofs should be more than just some 
algebra. 
 
Explain what you are doing at each step and 
indicate where you apply the induction 
hypothesis. 



[Basis] 
 
On a problem of size 1, the maxSort starts   

with this statement: 
 
     if (size <= 1) return;   
 
and since size=1 for a problem of size 1,  the 
maxSort returns without making any key 
comparisons. 
 
The formula gives n(n-1)/2 which for n=1 is equal 
to 1 (1-1) / 2 = 0 as required. 



[Induction step]  
Assume that maxSort does n(n-1)/2  key 
comparisons on a problem of size n.  
We want to prove that maxSort does  
(n+1)((n+1)-1)/2 = (n+1)n/2= (n2 + n)/2 key 
comparisons on a problem of size n+1. 
 



The initial call to maxSort for a problem 
of size n+1 has size=n+1. 
Each iteration of the for loop has 1 key 
comparison: 
         for (i=1; i < size; i++) 
                  if (A[i] >= A[maxPos]  ) maxPos=i; 
The iterations of this loop have i=1, 2, …, size-1 
and hence the number of iterations is size-1=n. 
Thus, the initial call has n key comparisons at 
the top level of recursion. The problem 
remaining after the maximum key is exchanged 
with the one in position n has size n. By 
induction, this problem will involve n(n-1)/2 key 
comparisons  arising from the call:            
maxSort(size-1); 
 
 
 
 
 
 
 
 
 



So the total number of key comparisons is: 
 
     n           +                 n(n-1)/2 
(Top level)      (Solving problem of size n) 
 
=  2n/2 + (n2 –n)/2 = (n2 + n)/2 as required. 



How could we bound the key comparisons so 
that we know the number is in 𝜃(n2) without 
computing the exact number of them? 
 
Or how could we bound the total amount of 
work done? 
 
This tactic of getting lower and upper 
bounds on the work done by an algorithm 
can be very valuable for more complicated 
algorithms that are harder to analyze. 


