
Use the technique shown in class for
finding lower and upper bounds for a sum
to prove that:

 𝑖5

∈ 𝜃(𝑛6)

𝑛

𝑖=0

2

Announcements
Start work on Assignment #2 early so you
can ask for help if you need it.

Assignment 2 Part A: Due Fri. Oct. 4.
Assignment 2 Part B: Due Tues. Oct. 8.
Office hours this week:
F 12:30, 1:30

WECS: CSC Revealed Clinic today at 2:30 in
ECS 348. Volunteers welcome.
WECS has an e-mail listserv: sign up?
http://wecs.csc.uvic.ca/

3

Quicksort for assignment 2B:

1. pivot = first big integer value on the list.

2. Create 3 new lists, List1, List2 and List3.

3. Traverse the list removing each cell and

 placing it at the end of the appropriate list:

 List1: for values less than the pivot.

 List2: for values equal to the pivot.

 List3: for values greater than the pivot.

 4. Sort List1 and List3 recursively.

 5. The answer is List1 ∘ List2 ∘ List3.

4

public void maxSort(int size)
{ int i, t, maxPos;

 if (size <= 1) return;
 maxPos=0;
 for (i=1; i < size; i++)
 if (A[i] >= A[maxPos]) maxPos=i;

 t= A[maxPos];
 A[maxPos]= A[size-1];
 A[size-1] = t;

 maxSort(size-1);
 }

Prove by induction:

maxSort does n(n-1)/2 key comparisons on a
problem of size n.

Critique this proof that n(n-1)/2 is correct:

Basis (n=0): 0*(0-1)/2=0 so the base case
holds.

[Induction step]
Assume 1+2+ … + (n-1)= n(n-1)/2.
We want to prove that
1+2+ … + n= (n+1)n/2.

1+2+ … + n = [1 + 2 + … + n-1] + n =
n(n-1)/2 + n= (n+1)n/2 as required.

If it is a valid proof, how do you distinguish
it from this “proof” that n(n+1)/2 is
correct?
Basis (n=0): 0*(0+1)/2=0 so the base case
holds.

[Induction step]
Assume 1+2+ … + n= n(n+1)/2.
We want to prove that
1+2+ … + n+ n+1= (n+1)(n+2)/2.

1+2+ … + n + (n+1) = [1 + 2 + … + n] + (n+1) =
n(n+1)/2 + n+1= (n+1)(n+2)/2 as required.

If you are trying to prove something about a
program (in this case the maxSort method), it is
critical to discuss the operation of that program
in your proof.

Don’t be afraid of putting words/explanation into
your proofs.

Induction proofs should be more than just some
algebra.

Explain what you are doing at each step and
indicate where you apply the induction
hypothesis.

[Basis]

On a problem of size 1, the maxSort starts

with this statement:

 if (size <= 1) return;

and since size=1 for a problem of size 1, the
maxSort returns without making any key
comparisons.

The formula gives n(n-1)/2 which for n=1 is equal
to 1 (1-1) / 2 = 0 as required.

[Induction step]
Assume that maxSort does n(n-1)/2 key
comparisons on a problem of size n.
We want to prove that maxSort does
(n+1)((n+1)-1)/2 = (n+1)n/2= (n2 + n)/2 key
comparisons on a problem of size n+1.

The initial call to maxSort for a problem
of size n+1 has size=n+1.
Each iteration of the for loop has 1 key
comparison:
 for (i=1; i < size; i++)
 if (A[i] >= A[maxPos]) maxPos=i;
The iterations of this loop have i=1, 2, …, size-1
and hence the number of iterations is size-1=n.
Thus, the initial call has n key comparisons at
the top level of recursion. The problem
remaining after the maximum key is exchanged
with the one in position n has size n. By
induction, this problem will involve n(n-1)/2 key
comparisons arising from the call:
maxSort(size-1);

So the total number of key comparisons is:

 n + n(n-1)/2
(Top level) (Solving problem of size n)

= 2n/2 + (n2 –n)/2 = (n2 + n)/2 as required.

How could we bound the key comparisons so
that we know the number is in 𝜃(n2) without
computing the exact number of them?

Or how could we bound the total amount of
work done?

This tactic of getting lower and upper
bounds on the work done by an algorithm
can be very valuable for more complicated
algorithms that are harder to analyze.

