
1

Write down the definition of Omega.

Prove that:

1. T(n) = n4 – 10 n2 – 100 is in Ω(n4)

2

Assume that T, f and g are functions mapping the
natural numbers {0, 1, 2, 3, ...} into the positive
reals.

Definition: “Omega” A function T(n) is in Ω(f(n))
if there exist constants n0 ≥ 0, and c > 0, such
that for all n ≥ n0, T(n) ≥ c * f(n).

Definition: “Theta” The set θ(g(n)) of functions
consists of Ω(g(n))  O(g(n)).

3

Announcements

Office hours this week:

T 12:30, 2:30

W 12:30, 1:30

F 12:30, 1:30

Please let me know
if you plan to
attend at one of
these.

4

Assignment #2 parts A (due Fri. Oct. 4) and B
(due Tues. Oct. 8) are posted. Read through them
and let me know if you have any questions.

Relevant sections of text:

1.1: Java review.

1.2-1.3: Programming basics review.

1.4: Algorithm analysis.

We will cover 1.5 later when we do graph
algorithms.

Now: Ch. 2: Sorting.

For recurrences/induction: Use a Math 122 text.

5

6

T0(n)= n + 2 T(n/2), T(1)= 1.

T1(n)= 10n + 20 + 2 T(n/2), T(1)= 30

T2(n)= 10n + 20n + 2 T(n/2), T(1)= 30

T0: Used for the time complexity of mergeSort.
T1: If for any n, mergeSort does at most 10n + 20 machine
instructions at the top level of recursion (ignoring those done
by a recursive call), T1(n) is an upper bound on the actual
number of machine instructions.
T2 (n): Upper bound on T1(n).

T0(n) ≤ T1(n) ≤ T2(n) = 30 * T0(n) for all n ≥ 1.
So the actual number of machine instructions T1(n) is in
O(T0(n)).

7

Max Sort

http://images.google.ca/imgres?imgurl=http://www.funnycoloring.com/img/snoopy-3-b1145.jpg&imgrefurl=http://www.funnycoloring.com/snoopy-3.htm&usg=__pcRQMqYaVX_v0vdZ-tHBT6SNZQY=&h=880&w=660&sz=54&hl=en&start=50&um=1&tbnid=Vsvs80WXSmK0zM:&tbnh=146&tbnw=110&prev=/images%3Fq%3Dsnoopy%26ndsp%3D20%26hl%3Den%26rlz%3D1T4GFRE_enCA327CA327%26sa%3DN%26start%3D40%26um%3D1

8

Outline:

This class starts by defining the sorting
problem. Max Sort, a very simple selection
sort algorithm, is introduced. Its
implementation can be iterative or recursive.

The comparison model is presented. It is the
basis of the time complexity analyses of the
most common sorting algorithms. Because the
amount of work these do is proportional to
the number of key comparisons and swaps,
counting these can provide reliable estimates
as to running times of the algorithms on large
problems.

9

Scatter Plots for Merge Sort:

Taken from: Algorithms in C++ by Sedgewick.

10 From software by Kenneth Lambert and Thomas Whaley.

Max Sort scatter plot

11

Definition: A Sorting Problem

(with integer data)

Given an array of n integers,

 A[0], A[1], ... , A[n-1],

 rearrange the values so they are sorted:

A[0] ≤ A[1] ≤ ... ≤ A[n-1].

12

Inductive definition: Sorted array of size n.

Throughout the term, arrays follow C/Java
conventions: A[0..n-1].

[Basis] If n = 0 or 1, A is sorted.

[Inductive step] Otherwise, A is sorted if

A[n-1] ≥ A[0], A[1], ... , and A[n-2],

and further, A[0..n-2] is a sorted array.

13

Iterative Maxsort: Pseudocode

Maxsort(A[0..(n-1)])

1. for end= n-1 down to 1 do
{

}

1.1 Find the position max_pos of the
 maximum element in A[0..end].
1.2 Swap(A[max_pos], A[end]).

14

15

 public class Array
 { int n; int [] A;

 public void maxSort()
 { int i, t, end, max_pos;

 for (end= n-1; end > 0; end--)
 { max_pos=0;
 for (i= 1; i <= end; i++)
 if (A[i] >= A[max_pos]) max_pos= i;
 t= A[max_pos];
 A[max_pos]= A[end];
 A[end]= t;
 }

 }

Implicit
variable:
this

Iterative MaxSort:

16

 for (end= n-1; end > 0; end--)
 { max_pos=0;
 for (i= 1; i <= end; i++)
 {
 if (A[i] >= A[max_pos]) max_pos= i;
 }

/* Swap the max. element with the end
*/
 t= A[max_pos];
 A[max_pos]= A[end];
 A[end]= t;
 }

17

Definition: The Comparison Model.
Problem size: n.

Operations permitted are:
1. Key Comparisons- compare A[i] and A[j]
 using ≤ or ≥ .
2. Swap(A[i], A[j]).

Not allowed: Hashing, examination of individual

bits of the data, ...
In your algorithm, you can use any other

variables you need and may manipulate them
as you wish as long as only key comparisons
and swaps are used when accessing any data
values.

18

 for (end= n-1; end > 0; end--)
 { max_pos=0;
 for (i= 1; i <= end; i++)
 {
 if (A[i] >= A[max_pos]) max_pos= i;
 }

/* Swap the max. element with the end
*/

 t= A[max_pos];
 A[max_pos]= A[end];
 A[end]= t;
 }

KEY COMPARISON

SWAP

19

Recursive Maxsort:

Maxsort(A[0..(n-1)])

1. [Base case] If n= 0 or 1, return.

2. Otherwise, find the position max_pos of

the maximum element in A[0..(n-1)].

3. Swap(A[max_pos], A[n-1]).

4. MaxSort(A[0..(n-2)]).

20

Recursive MaxSort:

public void maxSort(int size)
{ int i, t, maxPos;

 if (size <= 1) return; // Base case
 maxPos=0;
 for (i=1; i < size; i++)
 if (A[i] >= A[maxPos]) maxPos=i;
 t= A[maxPos];
 A[maxPos]= A[size-1];
 A[size-1] = t;
 maxSort(size-1);
 }

21

How does Max Sort compare to

Merge Sort on big problems?

Table taken from notes by Robert Sedgewick and Kevin Wayne.

