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Write down the definition of Omega.  
 
Prove that: 
 
1.   T(n) =  n4 – 10 n2 – 100 is in Ω(n4)  
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Assume that T, f and g are functions mapping the 
natural numbers {0, 1, 2, 3, ...} into the positive 
reals.  
 
Definition: “Omega” A function T(n) is in Ω(f(n)) 
if there exist constants n0 ≥ 0, and c > 0, such 
that for all n ≥ n0, T(n) ≥ c * f(n).  
 
Definition: “Theta” The set θ(g(n)) of functions 
consists of Ω(g(n))  O(g(n)).  
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Announcements 

Office hours this week: 

T 12:30, 2:30   

W 12:30, 1:30  

F 12:30, 1:30 

 

 

  

 

Please let me know 
if you plan to 
attend at one of 
these. 
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Assignment #2 parts A (due Fri. Oct. 4) and B 
(due Tues. Oct. 8) are posted. Read through them 
and let me know if you have any questions. 

Relevant sections of text: 

1.1: Java review. 

1.2-1.3: Programming basics review. 

1.4: Algorithm analysis. 

We will cover 1.5 later when we do graph 
algorithms. 

Now: Ch. 2: Sorting. 

For recurrences/induction: Use a Math 122 text. 
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T0(n)=    n              +  2 T(n/2), T(1)= 1. 
 
T1(n)= 10n +   20    +  2 T(n/2), T(1)= 30 
 
T2(n)= 10n +  20n   +  2 T(n/2), T(1)= 30 
 
T0: Used for the time complexity of mergeSort. 
T1: If for any n, mergeSort does at most 10n + 20 machine 
instructions at the top level of recursion (ignoring those done 
by a recursive call), T1(n) is an upper bound on the actual 
number of machine instructions. 
T2 (n): Upper bound on T1(n). 
 
T0(n) ≤   T1(n) ≤ T2(n) = 30 * T0(n) for all n ≥ 1. 
So the actual number of machine instructions T1(n) is in 
O( T0(n) ). 
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Max Sort 

http://images.google.ca/imgres?imgurl=http://www.funnycoloring.com/img/snoopy-3-b1145.jpg&imgrefurl=http://www.funnycoloring.com/snoopy-3.htm&usg=__pcRQMqYaVX_v0vdZ-tHBT6SNZQY=&h=880&w=660&sz=54&hl=en&start=50&um=1&tbnid=Vsvs80WXSmK0zM:&tbnh=146&tbnw=110&prev=/images%3Fq%3Dsnoopy%26ndsp%3D20%26hl%3Den%26rlz%3D1T4GFRE_enCA327CA327%26sa%3DN%26start%3D40%26um%3D1
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Outline: 

This class starts by defining the sorting 
problem. Max Sort, a very simple selection 
sort algorithm, is introduced. Its 
implementation can be iterative or recursive.  

The comparison model is presented. It is the 
basis of the time complexity analyses of the 
most common sorting algorithms. Because the 
amount of work these do is proportional to 
the number of key comparisons and swaps, 
counting these can provide reliable estimates 
as to running times of the algorithms on large 
problems. 

 



9 

Scatter Plots for Merge Sort:  

Taken from: Algorithms in C++ by Sedgewick. 



10 From software by Kenneth Lambert and Thomas Whaley. 

Max Sort scatter plot  
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Definition: A Sorting Problem  

(with integer data) 

 

Given an array of n integers, 

 A[0], A[1], ... , A[n-1], 

 rearrange the values so they are sorted:  

A[0]  ≤ A[1]  ≤ ...  ≤ A[n-1].  
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Inductive definition: Sorted array of size n.  
 

Throughout the term, arrays follow C/Java 
conventions: A[0..n-1].  
 

[Basis] If n = 0 or 1, A is sorted.  
 

[Inductive step] Otherwise, A is sorted if  

A[n-1] ≥ A[0], A[1], ... , and A[n-2],  

and further, A[0..n-2] is a sorted array.  
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Iterative Maxsort: Pseudocode 
 
Maxsort(A[0..(n-1)])  
 
1. for end= n-1 down to 1 do  
{  
 
 
 
 
}  

1.1 Find the position max_pos of the 
     maximum element in A[0..end].  
1.2 Swap(A[max_pos], A[end]).  
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 public class Array 
 {  int n;  int [] A;  
     
    public void maxSort() 
    {    int i, t, end, max_pos; 
          
        for (end= n-1; end > 0; end--) 
           {    max_pos=0; 
              for (i= 1; i <= end; i++) 
                    if (A[i] >= A[max_pos])  max_pos= i; 
               t= A[max_pos]; 
               A[max_pos]= A[end]; 
               A[end]= t; 
            } 

     } 

Implicit 
variable: 
this 

Iterative MaxSort: 
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    for (end= n-1; end > 0; end--) 
    {  max_pos=0; 
       for (i= 1; i <= end; i++) 
       { 
          if (A[i] >= A[max_pos]) max_pos= i; 
       } 
 
/*     Swap the max. element with the  end 
*/  
       t= A[max_pos]; 
       A[max_pos]= A[end]; 
       A[end]= t; 
    } 
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Definition: The Comparison Model.  
Problem size: n.  

Operations permitted are:  
1. Key Comparisons- compare A[i] and A[j]  
   using ≤ or ≥ . 
2. Swap(A[i], A[j]).  
 
Not allowed: Hashing, examination of individual 

bits of the data, ...  
In your algorithm, you can use any other 

variables you need and may manipulate them 
as you wish as long as only key comparisons 
and swaps are used when accessing any data 
values.  



18 

    for (end= n-1; end > 0; end--) 
    {  max_pos=0; 
       for (i= 1; i <= end; i++) 
       { 
          if (A[i] >= A[max_pos] ) max_pos= i; 
       } 
 
/*     Swap the max. element with the  end 
*/  
        
       t= A[max_pos]; 
       A[max_pos]= A[end]; 
       A[end]= t; 
    } 

 

KEY COMPARISON 

SWAP 
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Recursive Maxsort: 
 
Maxsort(A[0..(n-1)])  
 
1. [Base case]  If n= 0 or 1, return.  
 
2. Otherwise, find the position max_pos of 

the maximum element in A[0..(n-1)].  
 
3. Swap(A[max_pos], A[n-1]).  
 
4. MaxSort(A[0..(n-2)]).  
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Recursive MaxSort: 

public void maxSort(int size) 
{      int i, t, maxPos; 
    
       if (size <= 1) return;   // Base case 
       maxPos=0; 
       for (i=1; i < size; i++) 
             if (A[i] >= A[maxPos]) maxPos=i; 
       t= A[maxPos]; 
       A[maxPos]= A[size-1]; 
       A[size-1] = t; 
       maxSort(size-1); 
   } 
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How does Max Sort compare to 

Merge Sort on big problems? 

Table taken from notes by Robert Sedgewick and Kevin Wayne.  


