
1

Problem of the Day

Assume that n= 2k+1-1.

Solve this recurrence using repeated
substitution showing all your work:

T(n)= (n+1) + 2 T((n-1)/2), T(1)=1.

Hint: These are a lot easier to solve if you
express the equations in terms of k before
starting.

For more of a challenge, solve this one:

T(n)= n + 2 T((n-1)/2), T(1)=1.

2

Announcements:
Fri. Oct. 4: Assignment 2A is due.

If your code for 1B is not correct, keep
working on it. Feedback will be available
soon.

Deadline for 2B extended to Tues. Oct. 15.

3

Quicksort
A well-known sorting algorithm developed by C.
A. R. Hoare in 1962 that, on average, makes
Θ(nlogn) (big O notation) comparisons to sort n
items. However, in the worst case, it makes
Θ(n2) comparisons. Typically, quicksort is
significantly faster in practice than other
Θ(nlogn) algorithms, because its inner loop can
be efficiently implemented on most
architectures, and in most real-world data, it is
possible to make design choices which minimize
the probability of requiring quadratic time.

 http://en.wikipedia.org/wiki/Quicksort

4

Quicksort for Linked Lists

1. Choose a key value x to be the pivot.

2. [Divide] Break the problem into three
subproblems:

 P1: Keys < x.

 P2: Keys equal to x.

 P3: Keys > x.

3. [Conquer] Solve the P1 and P3 recursively.

4. [Marry] The answer is that of P1 followed by
P2 followed by P3.

5

Quicksort (Arrays)

1. Choose a key value x to be the pivot.

2. [Divide] Break the problem into three
subproblems:

 P1: Keys < x.

 P2: The pivot x.

 P3: Keys ≥ x.

3. [Conquer] Solve the P1 and P3 recursively.

4. [Marry] The answer is that of P1 followed by
P2 followed by P3.

6

public class QuickSort {

// Quicksort code (modified from Sedgewick)

public static void quicksort(int[] A)
{
 shuffle(A); // to guard against worst case

 quicksort(A, 0, A.length - 1);
}

http://www.cs.princeton.edu/introcs/42sort/QuickSort.java.html

7

// quicksort A[left] to A[right]

public static void quicksort(int[] A,
 int left, int right)
{
 if (right <= left) return;

 int pivot_pos = partition(A, left, right);

 quicksort(A, left, pivot_pos-1);

 quicksort(A, pivot_pos+1, right);
 }

8

// partition A[left] to A[right]
private static int partition(int [] A,
 int left, int right) {
int i = left; int j = right-1;

while (true)
{
 while (A[i] < A[right]) {i++;}
 while (j > left && A[right] < A[j]) {j--};

 if (i >= j) break;
 swap(A, i, j); i++; j--;
}
swap(A, i, right); // Put pivot element into place
return i;
}

9

Quicksort

