Problem of the Day
Assume that n= 2k1-1,

Solve this recurrence using repeated
substitution showing all your work:

T(n)= (n+1) + 2 T((n-1)/2), T(1)=1.

Hint: These are a lot easier to solve if you
express the equations in terms of k before
starting.

For more of a challenge, solve this one:
T(n)=n+ 2 T((n-1)/2), T(1)=1.

Anhouncements:
Fri. Oct. 4. Assignment 2A is due.

If your code for 1B is not correct, keep
working on it. Feedback will be available
soon.

Deadline for 2B extended to Tues. Oct. 15.

Quicksort

A well-known sorting algorithm developed by C.
A.R. Hoare in 1962 that, on average, makes
O(nlogn) (big O notation) comparisons to sort n
iItems. However, in the worst case, it makes
©(n?) comparisons. Typically, quicksort is
significantly faster in practice than other
O(nlogn) algorithms, because its inner loop can
be efficiently implemented on most
architectures, and in most real-world data, it is
possible to make design choices which minimize
the probability of requiring quadratic time.

http://en.wikipedia.org/wiki/Quicksort

Quicksort for Linked Lists
1. Choose a key value x to be the pivot.

2. [Divide] Break the problem into three
subproblems:

P1: Keys < x.
P2: Keys equal to x.
P3: Keys > x.
3. [Conquer] Solve the P1 and P3 recursively.

4. [Marry] The answer is that of P1 followed by
P2 followed by P3.

Quicksort (Arrays)
1. Choose a key value x to be the pivot.

2. [Divide] Break the problem into three
subproblems:

P1: Keys < x.
P2: The pivot x.
P3: Keys 2 x.
3. [Conquer] Solve the P1 and P3 recursively.

4. [Marry] The answer is that of P1 followed by
P2 followed by P3.

public class QuickSort {

// Quicksort code (modified from Sedgewick)
public static void quicksort(int[] A)

{ shuffle(A); // to guard against worst case

quicksort(A, O, A.length - 1);

http://www.cs.princeton.edu/introcs/42sort/QuickSort.java.html

// quicksort A[left] to A[right]

public static void quicksort(int[] A,
int left, int right)
{

if (right <= left) return;
int pivot_pos = partition(A, left, right);
quicksort(A, left, pivot_pos-1);

quicksort(A, pivot_pos+1, right);
}

// partition A[left] o A[right]
private static int partition(int [] A,

int left, int right) {
int i = left; int j = right-1;

while (true)

{
while (A[i] < A[right]) {i++:}
while (j > left && A[right]< A[j]) {j--};

if (i >= j) break;

swap(A, i, j); i++ j--.
}
swap(A, i, right); // Put pivot element into place
return i g

}

Quicksort

L e 2
- . ..l'.:' '_. - ,-i.} .'..!_ -_.:-.;;!
.1 . '.. l... . -) '.. -... . ’. .l'. ... '."1
. - e L T Lypr
. . (T . C Y Y
. - e - Ll
- P A 2
. . . R o j'-‘;'.
.- .:, L '-'_'_' . '.l"-'_' :.-:.I'
.’l*.. . -r. .||, ‘I' .\’_‘.-‘:
. R . S et
: o W A
ey 1 "
o T _5_;::" KJ
e S T s =
; -f-'. : LT .T' .f.'- Y :I.h';{ }‘
" -' 3‘.. I ‘l...l" :
o " " "':J'. %
A .
d‘i'll'd' 1
o o
o -
' g /
. an T 1.
o e v
L L v

