
Replace these recurrence relations with simpler
ones that would give the same time complexity
asymptotically.
For all of these assume T(1)=1.

(a) T(n)= 3 n 2 + 4n - 7 + T(n/2)
(b) T(n) = 2 n + 10 log2(n) + 100 + 2 T (n/2)
(c) T(n) = n – 5 + T(1) + T (n-1)
(d) T(n) = 23 + T(n-1) + 2 T(n/2)
(e) T(n) = 7 * 2n + 7 * n2 + T(n-1)

2

1. Prove that
f(n) = 3 n2 - 8 n – 27 ∈ Θ(n2).

2. Set up a recurrence V(n) that gives
the value of mystery(n):

int mystery(int n)
{
 if (n==1) return(4);
 else return(5*n + 3 + mystery(n-1));
}

Revised deadlines:
Assignment 2A: Tuesday Oct. 8, beginning
of class on paper.

Uploads to connex (coming soon):
Assignment 1B Resubmission: Fri. Oct. 11.
Assignment 2B: Tues. Oct. 15.

Assignment 1A will be graded out of 90
(you can have > 100%).

4

Prove n3 is not in O(n2).

Hint: Try a proof by contradiction.

Proof

Assume that n3 is in O(n2).

Then by the definition of Big Oh, this means
that…

5

Space Requirements

For very big problems, it is sometimes
necessary to choose algorithms which do not
require too much extra space to avoid crashing
the computer.

Algorithms using less space can often run
faster than those requiring more space. This is
very important for interactive systems such as
video games.

We will learn to analyze extra space
requirements using the same notation we are
using for the running times (Big Oh, Ω and θ).

6

 L1 cache - 10 nanoseconds, 4-16 kilobytes
 L2 cache - 20-30 nanoseconds, 128-512K
Main memory - 60 nanoseconds, 32 MB or more

http://engpsy.blogspot.com/

Space

7

For sorting algorithms:

We will only count the space used for the
bookkeeping that the algorithm does and not the
space that the data is stored in.

Array A with the data: not counted.

Linked list: extra space is used by next pointers.

In the worst case, how much extra space might
the program need at one moment in time?

Extra Space:

8

 public class Array
 { int n; int [] A;
// Space for data in A is not counted
 public void maxSort()
 { int i, t, end, max_pos;

 for (end= n-1; end > 0; end--)
 { max_pos=0;
 for (i= 1; i <= end; i++)
 if (A[i] >= A[max_pos]) max_pos= i;
 t= A[max_pos];
 A[max_pos]= A[end];
 A[end]= t;
 }
 }

Implicit
variable:
this

Iterative MaxSort:

9

Recursive MaxSort:

public void maxSort(int size)
{ int i, t, maxPos;

 if (size <= 1) return;
 maxPos=0;
 for (i=1; i < size; i++)
 if (A[i] >= A[maxPos]) maxPos=i;
 t= A[maxPos];
 A[maxPos]= A[size-1];
 A[size-1] = t;
 maxSort(size-1);
 }

Implicit
variable:
this

10

The extra space used is:

 Iterative MaxSort: θ(1)

 Recursive MaxSort: θ(n)

If space is an issue, iterative MaxSort is
a better choice.

11

How much extra space does Quicksort use (the
implementation presented in class)?

12

// quicksort A[left] to A[right]

public static void quicksort(
 int[] A, int left, int right)
{
 if (right <= left) return;

 int pivot_pos = partition(A, left, right);

 quicksort(A, left, pivot_pos-1);

 quicksort(A, pivot_pos+1, right);
 }

13

// partition A[left] to A[right]
private static int partition(
 int [] A, int left, int right)
{
int i = left; int j = right-1;

while (true)
{
 while (A[i] < A[right]) {i++;}
 while (A[right] < A[j]) {j--; if (j == left) break; }
 if (i >= j) break;
 swap(A, i, j); i++; j--;
}
swap(A, i, right); // Put pivot element into place
return i;
}

14

How much extra space does Mergesort use if the
data structure is a linked list?

15

Mergesort

public class LinkedList // Same as Lab 1
{ int n;
 ListNode start;
 ListNode rear;

 public void mergeSort(int level)
 {
 LinkedList list1;
 LinkedList list2;
 int i;

/* A list of size 0 or 1 is already sorted. */

 if (n <=1) return;

Implicit
variable this.

Code omitted here.

I am assuming for this program, the list is split
into two sublists list1 and list2 the same way you
do it for your reverse method. The list1 has the
first floor(n/2) items and the list2 has the next
ceiling(n/2).

Make sure that in your code:

list1.start, list1.rear, list1.n, and

list2.start, list2.rear, list2.n all have correct
values and that both list1 and list2 are null
terminated.

/* Sort the 2 sublists recursively: */

 list1.mergeSort(level+1);

 list2.mergeSort(level+1);

/* Merge the two sorted sublists. */
start= null; rear= null;
LinkedList tmp; // Keeps track of list with smallest key
while (list1.start != null && list2.start != null)
{
 if (list1.start.data < list2.start.data)
 tmp= list1;
 else tmp= list2;

 if (start == null) start= tmp.start;
 else rear.next= tmp.start;

 rear= tmp.start;

 tmp.start= tmp.start.next;
 rear.next= null;
}

// Now append the list that still has
// items in it to the end.

 if (list1.start != null)
 tmp= list1;
 else
 tmp = list2;
 rear.next= tmp.start;
// Make sure our
// object has a correct rear pointer
 rear= tmp.rear;

} // end mergeSort

