Give recurrences T(n) and S(n) for the time and
space complexity of:
public static void get_space(int level, int [] A)
{
int [1B, inti,n;
n= A.length;
if (n==1) return;

for (i=1; i <= n; i++)
{
B= new int[n-1];
get_space(level+1, B);
}

CSC 225 Announcements:

Last day for withdrawing from first-term courses
with-out penalty of failure: Thursday Oct. 31.
Grading Scheme:

5 written assignments: 3% each.

3 programming assignments: 5% each.

Students must have an average of at least 50% on
the assignments in order to write the final exam.

I will compute the average 2 ways:
1. Each of 8 assignments weighted equally.
2. Programs: 50% and Written: 50%.

If either score is > 50% then you have meft this
condition. 2

Actual Running Times of
Some Sorting Algorithms

In 1999, the CSC 225 students

programmed various sorting algorithms in
C and timed them on various inputs.

This is where the following plots came
from.

Time

2.0

1.5

1.0

0.5

Max Sort and Merge sort

| | 150000.0
£ 100000.0
.:06‘
ig
>
3
i &
=
&
Q
R
500000
<
N
AN
Merge Sort
. o — Opt. Me 0.0
0.0 1000.0 2000.0

Problem Size

Number of Comparisons
Max Sort and Merge Sort

Merge Sort

0.0

2000

400.0

800.0

Running Times: O(n log n)

| Binary
0.040 | Tl" ee
g /. Sort
0.030 | :f-? < / {\@
¥
0020 | / S_§§’Q§D
0010 1 RClndO m
Inputs

0.000 : . 4 : :
0.0 1000.0 2000.0 3000.0

Running Times: O(n*2)

Sorted
Inputs

00 1000.0 20000 3000.0

Building the heap- which
algorithm is this?

Algorithms

INC++

FUNDAMENTALS
DATA STRUCTURES
SORTING
SEARCHING

ROBERT SEDGEWICK

with C++ consulting by Christopher J.Van Wyk

Dynamic Performance of Heapsort

"}j’»

"
o
&

>

/| ' / /

MaxSort

From: [LW95] Kenneth Lambert and Thomas Whaley, An Invitation to Computer
Science Laboratory Manual, West Publishing Company, 1995. Conference, 12:5
(1997) 57—70.

Quicksort

LI -

e
Lo

 om

oy ..

' o
APRAh
FLA]
L i)

= 3

L} L |

e

[
! 1...

10

Mergesort

11

DECISION TREE

LOLher. E Oun :l ABCD ABDG AGBD ACDB ADBC ADCE
Th W S.r BEACD BADC ECAD BCDA EBDAC EDCA
On e Or. CAED CADE CBAD CEDA CDAE CDEA
C C I .1_ DAEC DACE DBAC DBCA DCAE DCEA
ase Complexity -
[]
for. Sor"“n ABCD ABDC ACBD ACDE] [BACD BADC BCAD BCDA
9 ADBC ADCE CABD CADB BDAC BDCA CBAD CBDA

COAE DABC DACE DCAE) | COBA DEBAC DBCA DCBA

DG C<D Dl

ABCD ACED ABDC ADEC) BACD BCAD BADC EBDAC
ACDE CABD ADCE DABC BCDA CBAD BOCA DBAC

GADB COAB DACE DCAB CEDA CDBA DBECA DCBA

A /\m

GABD ABDC DABC
CADB ADBC DACE
CDAB ADCE DCAB
[Eggj ACED
ACDB
B<D D<B

[acep| [acos]

http://users.informatik.uni-halle.de/~jopsi/dinf204/notes_ full.shtml 12

The Comparison Model:
The problem: Sort n integers.

Operations permitted on the data: comparisons
and swaps.

I't's very hard to prove good lower bounds for
algorithm time complexities.

An easy lower bound for sorting is that any
algorithm must take time which is £2(n) because
if the algorithm does not examine all the data
items, then an adversary can change the value of
an unexamined data item and make the answer
wrong.

13

We can do better:
Theorem:

For the comparison model, any sorting
algorithm requires at least {2(n log n) time
in the worst case.

This theorem cannot be beat in the Big Oh
sense because we have algorithms which
take time in O(n log n) in the worst case
which means it is a tight lower bound.

14

1. Sort these words in lexicographic order:
eat

either

earn

eaten

2. Write down a definition of lexicographic
order.

15

The permutations on 4 symbols listed in

lexicographic order (by columns):

1234
1243
1324
1342
1423
1432

2134
2143
2314
2341
2413
2431

3124
3142
3214
3241
3412
3421

4123
4132
4213
4231
4312
4321

16

A Decision Tree: Inputisa,b,c

Yes @ No
"'JT'EHN(} Y"‘*‘*N“
m "‘I'P*;N{} Y{—*‘-:.N{} m

(13 2> 231> 213D 312

17

Leaves | Nodes |Height

Note that a 5 . 5

complete binary

tree which has r 2 3 L

leaves has height 4 ! 2
38 15 3

B(log, r):

o el

Sistetetetelele

18

We can use our tactics for lower and
upper bounding to prove that:

log,(nl) € B(n log, n)

19

Which sorting algorithms have optimal
time complexities for the comparison
model (in a Big Oh sense)?

These B(n log, n) in the worst case:

Heapsort, Mergesort, Mediansort

Not optimal since worst case is 8(n?):

Quicksort, Maxsort, Binary Tree Sort

20

