
1

Give recurrences T(n) and S(n) for the time and
space complexity of:
public static void get_space(int level, int [] A)
{
 int [] B; int i, n;
 n= A.length;
 if (n==1) return;

 for (i=1; i <= n; i++)
 {
 B= new int[n-1];
 get_space(level+1, B);
 }
}

2

CSC 225 Announcements:
Last day for withdrawing from first-term courses
with-out penalty of failure: Thursday Oct. 31.
Grading Scheme:
5 written assignments: 3% each.
3 programming assignments: 5% each.
Students must have an average of at least 50% on
the assignments in order to write the final exam.

I will compute the average 2 ways:
1. Each of 8 assignments weighted equally.
2. Programs: 50% and Written: 50%.

If either score is ≥ 50% then you have met this
condition.

3

In 1999, the CSC 225 students
programmed various sorting algorithms in
C and timed them on various inputs.

This is where the following plots came
from.

Actual Running Times of
Some Sorting Algorithms

4

5

Binary
Tree
Sort

Random

Inputs

6

Sorted
Inputs

7

Building the heap- which
algorithm is this?

8

Dynamic Performance of Heapsort

9

MaxSort

From: [LW95] Kenneth Lambert and Thomas Whaley, An Invitation to Computer
Science Laboratory Manual, West Publishing Company, 1995. Conference, 12:5
(1997) 57—70.

10

Quicksort

11

Mergesort

12

A Lower Bound
on the Worst
Case Complexity
for Sorting

http://users.informatik.uni-halle.de/~jopsi/dinf204/notes_full.shtml

13

The Comparison Model:

The problem: Sort n integers.

Operations permitted on the data: comparisons
and swaps.

It’s very hard to prove good lower bounds for
algorithm time complexities.

An easy lower bound for sorting is that any
algorithm must take time which is Ω(n) because
if the algorithm does not examine all the data
items, then an adversary can change the value of
an unexamined data item and make the answer
wrong.

14

We can do better:

Theorem:

For the comparison model, any sorting
algorithm requires at least Ω(n log n) time
in the worst case.

This theorem cannot be beat in the Big Oh
sense because we have algorithms which
take time in O(n log n) in the worst case
which means it is a tight lower bound.

15

1. Sort these words in lexicographic order:

eat

either

earn

eaten

2. Write down a definition of lexicographic
order.

16

The permutations on 4 symbols listed in
lexicographic order (by columns):

1 2 3 4

1 2 4 3

1 3 2 4

1 3 4 2

1 4 2 3

1 4 3 2

2 1 3 4

2 1 4 3

2 3 1 4

2 3 4 1

2 4 1 3

2 4 3 1

3 1 2 4

3 1 4 2

3 2 1 4

3 2 4 1

3 4 1 2

3 4 2 1

4 1 2 3

4 1 3 2

4 2 1 3

4 2 3 1

4 3 1 2

4 3 2 1

17

A Decision Tree: Input is a, b, c

18

Note that a
complete binary
tree which has r
leaves has height
θ(log2 r):

Leaves Nodes Height

? 1 0

2 3 1

4 7 2

8 15 3

… …

2h 2h+1 - 1 h

19

We can use our tactics for lower and
upper bounding to prove that:

 log2(n!)  θ(n log2 n)

20

Which sorting algorithms have optimal
time complexities for the comparison
model (in a Big Oh sense)?

These θ(n log2 n) in the worst case:

Heapsort, Mergesort, Mediansort

Not optimal since worst case is θ(n2):

Quicksort, Maxsort, Binary Tree Sort

