Show the steps of Boruvka’'s MST
algorithm on this example:

The input:

NP PRPRPOOO S
W WwWNOWN RO

FE NN =W

If you hand in 4A at the beginning of
class today: then you will get +5 bonus
marks.

Or you can hand it in at the beginning of
class on Tuesday Nov. 19 (nho bonus
marks).

There is a lab on Monday Nov. 18 (in
case you heed some extra help).

I wrote a program that generates small test
instances for the MST problem.

Usage: a.out <min_n> <max_h> <increment> <density>

The number of vertices will range from

min_n o max_n increasing by increment.

Set density to:

O for graphs with maximum degree 3

1 for graphs with maximum degree log n

2 for graphs with maximum degree sqrt(n)

3 for graphs with average degree close to n/2
4 for close to complete graphs

5 for repeated edge weight testing

Graph Traversals

Two common types of graph traversals are
Depth First Search (DFS) and Breadth First
Search (BFS). A preorder traversal of a binary
tree is a special case of DFS and a level order
traversal is a special case of BFS. DFS is
implemented with a stack, and BFS with a
queue.

The aim in both types of traversals is to visit
each vertex of a graph exactly once. In DFS,
you follow a path as far as you can go before
backing up. With BFS, you visit all the
neighbours of the current node before
exploring further afield in the graph.

Queue (used for BFS)

http://devcentral.f5.com/weblogs/images/devcentral_f5_com/weblogs/Joe/WindowsLiveWriter/P
owerShellABCsQisforQueues_919A/queue_2.jpg

F‘“* 3

| F
l
‘ -

9
131560 ~

http://www.ac-nancy-metz.fr/enseign/anglais/Henry/bus-queue.jpg 5

Queue data structure:

Items are:

Added to the rear of the queue.
Removed from the front of the queue.

http://cs.wellesley.edu/~cs230/assignments/labl12/queue.jpg

Queues can be implemented as a linked list.
Which end of the list should we use for the
queue front?

qfront

Queue data structure:
Items are:
Added to the rear of the queue.

Removed from the front of the queue.

qfront

ExEEUmED =

qrear

If you have an upper bound on the lifetime size
of the queue then you can use an array:
gfront=5, grear=9

(grear is next empty spot in array)

0 1 2 3 4 5 6 7 8 9 10 1 12 13

[[[[slefalal T T[T

E%I3I—%6 —1-) 4 1

B

qrear

gfront=5, grear=9

0 1 2 3 4 5 6 7 8 9 10 1 12 13

Q: [[[[slefalal T T[T

To test if there is something in the queue:
if (gfront < grear)

To add x to the queue:

Q[qgrear]= Xx; grear++;

To delete front element of the queue:

x= Q[gfront]; gfront++;

10

If the neighbours of each vertex are
ordered according to their vertex
numbers, in what order does a BFS
starting at O visit the vertices?

(1 >
© © 5

11

BFS starting at a vertex s using an array for
the queue:
Data structures:
A queue Q[O..(n-1)] of vertices, gfront, grear.
parent[i]= BFS tree parent of node i.
The parent of the root s is s.
To initialize:
// Set parent of each node to be -1 to indicate
// that the vertex has not yet been visited.
for (i=0; i < n; i++) parent[i]= -1;

// Initialize the queue so that BFS starts at s
qfront=0; grear=1; Q[qfront]= s;
parent[s]=s; 12

while (qfront < qrear) // Q is not empty
u= Q[gfront]; qgfront++;
for each neighbour v of u
if (parent[v]==-1)// not visited
parent[v]= u;
Q[qgrear]= v; grear++,
end if
end for

end while

13

Red arcs represent parent information:

NS

5

3)

15

Adjacency matrix:

012 3 4
0/|0{1|0/1|0

111101111

17

2/10/1/0/0]1
31111001
4/0/1/1/10

Adjacency list:

0 N1 13
1| T3
2| AT 3=
3| Lol 14
4| 1

BFI[v]= Breadth first index of v
= step at which v is visited.

The BFI[v] is equal to v's position in the
queue.

o 1 2 3 4 5 6 7
Qlojtfs]7f2]4[5]6] .

To initialize:

// Set parent of each node to be -1 to indicate
// that the vertex has not yet been visited.
for (i=0; i < n; i++) parent[i]= -1;

// Initialize the queue so that BFS starts at s
gfront=0; grear=1; Q[qfront]= s;
parent[s]=s;

BFI[s]= O;

20

while (gfront < gqrear) // Q is not empty
u= Q[gfront]; qgfront++;
for each neighbour v of u
if (parent[v]==-1)// not visited
parent[v]= u; BFI[v]= grear;
Q[qgrear]= v; grear++,
end if
end for

end Wh||€ 21

One application:

How many connected components does a
graph have and which vertices are in each

compohent?

© 3 ./.

Z (&

22

To find the connected components:
for (i=0; i < n; i++)
parent[i]= -1;
nComp= O;
for (i=0; i < n; i++)
if (parent[i] == -1)
nComp++;
BFS(i, parent, component, nComp);

23

BFS(s, parent, component, nComp)

// Do not initialize parent.

// Initialize the queue so that BFS starts at s
gfront=0; grear=1; Q[gfront]= s;

parent[s]=s;

component[s]= nComp;

24

while (gfront < grear) // Q is not empty
u= Q[qfront]; gfront++;
for each neighbour v of u
if (parent[v] == -1)// not visited
parent[v]= u; component[v]= nComp;
Q[qgrear]= v; grear++;
end if
end for

end while

25

How much time does BFS take to
indentify the connected components of a
graph when the data structure used for a
graph is an adjacency matrix?

26

Adjacency matrix:

012 3 4
0/|0{1|0/1|0

111101111

27

2/10/1/0/0]1
31111001
4/0/1/1/10

How much time does BFS take to
indentify the connected components of a
graph when the data structure used for a
graph is an adjacency list?

28

Adjacency list:

0 N1 13
1| T3
2| AT 3=
3| Lol 14
4| 1

30

~t AT O - NN NNt

MNMTONTOMNOVOMNOMNNM

NANANNANNOODOOOONO S I OO O

—t NN = MO NNIIOOTN =M

M123456234567
8000000111111

