
1

Show the steps of Boruvka’s MST
algorithm on this example:

The input:

2

If you hand in 4A at the beginning of
class today: then you will get +5 bonus
marks.

Or you can hand it in at the beginning of
class on Tuesday Nov. 19 (no bonus
marks).

There is a lab on Monday Nov. 18 (in
case you need some extra help).

3

I wrote a program that generates small test
instances for the MST problem.

Usage: a.out <min_n> <max_n> <increment> <density>

The number of vertices will range from
min_n to max_n increasing by increment.
Set density to:
0 for graphs with maximum degree 3
1 for graphs with maximum degree log n
2 for graphs with maximum degree sqrt(n)
3 for graphs with average degree close to n/2
4 for close to complete graphs
5 for repeated edge weight testing

4

Graph Traversals
Two common types of graph traversals are
Depth First Search (DFS) and Breadth First
Search (BFS). A preorder traversal of a binary
tree is a special case of DFS and a level order
traversal is a special case of BFS. DFS is
implemented with a stack, and BFS with a
queue.
The aim in both types of traversals is to visit
each vertex of a graph exactly once. In DFS,
you follow a path as far as you can go before
backing up. With BFS, you visit all the
neighbours of the current node before
exploring further afield in the graph.

5

Queue (used for BFS)

http://www.ac-nancy-metz.fr/enseign/anglais/Henry/bus-queue.jpg

http://devcentral.f5.com/weblogs/images/devcentral_f5_com/weblogs/Joe/WindowsLiveWriter/P
owerShellABCsQisforQueues_919A/queue_2.jpg

6

Queue data structure:

Items are:

Added to the rear of the queue.

Removed from the front of the queue.

http://cs.wellesley.edu/~cs230/assignments/lab12/queue.jpg

7

Queues can be implemented as a linked list.
Which end of the list should we use for the
queue front?

8

Queue data structure:

Items are:

Added to the rear of the queue.

Removed from the front of the queue.

9

If you have an upper bound on the lifetime size
of the queue then you can use an array:
qfront=5, qrear=9

(qrear is next empty spot in array)

10

To test if there is something in the queue:

if (qfront < qrear)

To add x to the queue:

Q[qrear]= x; qrear++;

To delete front element of the queue:

x= Q[qfront]; qfront++;

Q:

qfront=5, qrear=9

11

If the neighbours of each vertex are
ordered according to their vertex
numbers, in what order does a BFS
starting at 0 visit the vertices?

12

BFS starting at a vertex s using an array for
the queue:

Data structures:
A queue Q[0..(n-1)] of vertices, qfront, qrear.

parent[i]= BFS tree parent of node i.
The parent of the root s is s.
To initialize:
// Set parent of each node to be -1 to indicate
// that the vertex has not yet been visited.
for (i=0; i < n; i++) parent[i]= -1;

// Initialize the queue so that BFS starts at s
qfront=0; qrear=1; Q[qfront]= s;
parent[s]=s;

13

while (qfront < qrear) // Q is not empty

 u= Q[qfront]; qfront++;

 for each neighbour v of u

 if (parent[v] == -1) // not visited

 parent[v]= u;

 Q[qrear]= v; qrear++;

 end if

 end for

end while

14

15

Red arcs represent parent information:

16

The blue spanning tree is the BFS tree.

17

Adjacency matrix:

18

Adjacency list:

19

BFI[v]= Breadth first index of v

 = step at which v is visited.

The BFI[v] is equal to v’s position in the
queue.

20

To initialize:
// Set parent of each node to be -1 to indicate
// that the vertex has not yet been visited.
for (i=0; i < n; i++) parent[i]= -1;

// Initialize the queue so that BFS starts at s
qfront=0; qrear=1; Q[qfront]= s;
parent[s]=s;

BFI[s]= 0;

21

while (qfront < qrear) // Q is not empty

 u= Q[qfront]; qfront++;

 for each neighbour v of u

 if (parent[v] == -1) // not visited

 parent[v]= u; BFI[v]= qrear;

 Q[qrear]= v; qrear++;

 end if

 end for

end while

22

One application:

How many connected components does a
graph have and which vertices are in each
component?

23

To find the connected components:

for (i=0; i < n; i++)

 parent[i]= -1;

nComp= 0;

for (i=0; i < n; i++)

 if (parent[i] == -1)

 nComp++;

 BFS(i, parent, component, nComp);

24

BFS(s, parent, component, nComp)

// Do not initialize parent.

// Initialize the queue so that BFS starts at s

qfront=0; qrear=1; Q[qfront]= s;

parent[s]=s;

component[s]= nComp;

25

while (qfront < qrear) // Q is not empty

 u= Q[qfront]; qfront++;

 for each neighbour v of u

 if (parent[v] == -1) // not visited

 parent[v]= u; component[v]= nComp;

 Q[qrear]= v; qrear++;

 end if

 end for

end while

26

How much time does BFS take to
indentify the connected components of a
graph when the data structure used for a
graph is an adjacency matrix?

27

Adjacency matrix:

28

How much time does BFS take to
indentify the connected components of a
graph when the data structure used for a
graph is an adjacency list?

29

Adjacency list:

30

 8 24
 0 1 1
 0 2 2
 0 3 3
 0 4 5
 0 5 1
 0 6 3
 1 2 2
 1 3 5
 1 4 4
 1 5 2
 1 6 1
 1 7 3

 2 3 1
 2 4 1
 2 6 4
 2 7 6
 3 4 1
 3 6 2
 3 7 2
 4 6 3
 4 7 4
 5 6 1
 5 7 3
 6 7 2

