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How many key comparisons does this 
algorithm do for finding the min and the 
max of n=2k data items: 

1. for (i=0; i < n; i+=2) 

     if (A[i] > A[i+1]) swap(A[i], A[i+1]) 

Then use a linear scan (like in MaxSort) to 

 2. Find the min of  

  A[0], A[2], A[4], … , A[n-2] 

 3. Find the max of 

  A[1], A[3], A[5], … A[n-1] 
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Old final Exam Question 

Answer true or false and justify your 
answer: 

Since it takes at least n-1 key comparisons 
to find the min of n data items and it takes 
at least n-1 key comparisons to find the 
max of n data items, it takes at least 2n-2 
key comparisons to find both the min and 
the max. 
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Final exam tutorial time: 
Thursday Dec. 5: from 11am until all 
questions are answered. ECS 116. 
.   
Written Assignment #5: due Wed. Dec. 4, 
beginning of class.  
 
For those of you worried about failing the 
assignments: you should write the final 
exam.  
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Proof of Correctness for the Kruskal and 
Dijkstra/Prim MST algorithms. 

 

Why do these algorithms correctly 
compute a minimum weight spanning 
tree? 
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What's a Cycle? 
A cycle of a graph is an alternating sequence 
of vertices and edges of the form  v0, (v0, v1), 
v1, (v1, v2), v2, (v2, v3),  … ,vk-1, (vk-1, vk), vk  
where except for v0  = vk  the vertices are 
distinct 
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What's a Cut? 
Let (X,Y) be a partition of the nodes of 
a graph. The cut induced by that 
partition is the set of all edges {x,y} 
with x in X and y in Y.  
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The Red/Blue Rules for MST 

Author- Frank Ruskey. 
 
Color Invariant:  
There is a MST containing all the red 
edges and none of the blue edges.  
Red Rule:  
Let C  be a cut without red edges. Color 
red the smallest uncolored edge of C.  
Blue Rule:  
Let C  be a cycle without blue edges. Color 
blue the largest uncolored edge of C.  
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Red Rule: Dijkstra/Prim 
Let C  be a cut without red edges. Color 
red the smallest uncolored edge of C.  



11 

Blue Rule: Kruskal’s 
Let C  be a cycle without blue edges. Color 
blue the largest uncolored edge of C.  
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Generic Greedy Algorithm:  
 
Nondeterministically apply the Red and 

Blue rules until all edges are colored. 
The red edges form a MST. (Can stop 
when there is n-1 red edges) 
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Kruskal's Algorithm:  
T initially has no edges. 
Consider edges in order according to 

their weights.  
For edge (u, v), apply the Blue rule if 

T+(u,v) creates a cycle, otherwise apply 
the Red rule.  
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Dijkstra/Prim Algorithm:  
T  initially contains one vertex. 
Successively apply the Red rule to all 

edges of the form (u, v), with u in T 
and v  not in T.  
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The Red/Blue Rules for MST 

Author- Frank Ruskey. 
 
Color Invariant:  
There is a MST containing all the red 
edges and none of the blue edges.  
Red Rule:  
Let C  be a cut without red edges. Color 
red the smallest uncolored edge of C.  
Blue Rule:  
Let C  be a cycle without blue edges. Color 
blue the largest uncolored edge of C.  
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Theorem: The colour invariant is 
maintained if we apply the blue rule or 
the red rule.  
Proof (by contradiction).  
Suppose not. Consider the first 
application of a blue or red rule which 
violates the colour invariant. Let R and B 
denote the red and blue edges already 
coloured so far without violating the 
colour invariant. Let T denote a MST of 
G which contains all of the edges in R 
but none of the edges in B.  
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Case 1: the red rule violates the colour 
invariant.  
 
In this case, we have an edge e=(u, v) 
which is the minimum weight edge in a 
cutset C having no edges from R . Violating 
the colour invariant means that there is no 
MST of the graph containing all of the 
edges in the set R ⋃ {e} but none of the 
edges in B.  
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Let (X, Y) be the partition of the 
vertices representing the cut C, and 
without loss of generality, u is in X and v 
is in Y. Consider the unique cycle in T + e. 
Because u is in X and v is in Y, the path 
in T which connects u and v must contain 
at least one edge e' in the cut (X, Y). 
This edge e' cannot be in R because by 
the red rule, C has no red edges. Also, e' 
is not in B because it is an edge of T.  
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Red Rule:  
Let C  be a cut without red edges. 
Color red the smallest uncolored edge 
of C.  
 
Color Invariant:  
There is a MST containing all the red 
edges and none of the blue edges.  

 



20 

The tree T' = T + e - e' has wt(T') = wt(T) 
+ wt(e) - wt(e'). This is less than or equal 
to wt(T) because wt(e) is less than or equal 
to wt(e)' (both edges are in C and e is a 
minimum weight edge of C). If wt(e) < 
wt(e'), this contradicts the initial 
assumption that T was a MST. Otherwise, 
T' is a MST which contains all of R union 
{e} and none of B, so the red rule does not 
violate the colour invariant.  
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Blue Rule:  
Let C  be a cycle without blue edges. Color 
blue the largest uncolored edge of C.  
 
 
 
Color Invariant:  
There is a MST containing all the red 
edges and none of the blue edges.  
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Case 2: the blue rule violates the 
colour invariant.  
 
In this case, we have an edge e=(u, v) 
which is the maximum weight edge in a 
cycle C with no edges from B. Violating 
the colour invariant means that there is 
no MST of the graph containing all of 
the edges in the set R but none of the 
edges in B ⋃ {e}. This implies that T 
must contain e.  
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Delete e from T to create a 2-
component forest. Let X be the 
component containing u and Y be the 
component containing v. Because the 
cycle C has a path from u to v, it must 
contain some edge e'=(x, y) which has x 
in X and y in Y. This e' is not in R 
because it is not in T. Further, it is not 
in B because by the blue rule, C has no 
edges in B.  
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The tree T' = T + e' - e has wt(T') = 
wt(T) + wt(e') - wt(e). This is less than 
or equal to wt(T) because wt(e) is 
greater than or equal to wt(e)' (both 
edges are on cycle C and e is a maximum 
weight edge of this cycle). If wt(e) > 
wt(e'), this contradicts the initial 
assumption that T was a MST. 
Otherwise, T' is a MST which contains 
all of R and none of B ⋃ {e}, so the blue 
rule does not violate the colour invariant.  
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Boruvka’s algorithm: 

Repeat 

 For each vertex v do: 

  Choose the min weight edge  

  incident to the v and colour it red. 

 Contract edges in the MST- if you get 

 multiple edges you can keep the one  

 with min weight. 

Until one vertex remains 
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First iteration: edge for each vertex is 
oriented so that it enters the vertex. 
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First iteration: edge for each vertex is 
oriented so that it enters the vertex. 
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If edges have the same weight, break ties 
by always selecting the one which has 
minumum label (u, v).  

For example:  

Both (0,4) and (0, 7) have weight 3: 

     (0, 4) < (0, 7) 

Correctness: 

At one phase, the edges selected never 
form a cycle. 
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The number of edges chosen at one phase 
is at least n/2. 

Therefore, the number of components is 
at least halved at every iteration. 

So the number of iterations is O(log2(n)). 

 

Time: O(m log2 n) [adjacency lists] 


