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1. Draw the union find 
data structure after the 
weighted union 
W_UNION(0,8). 

Use a weighted 
union that calls a 
collapsing find. 

2. What is in the 
parent array after 
the union? 



2 

Final exam tutorial time: 
Thursday Dec. 5: from 11am until all 
questions are answered. ECS 116. 
Programming Assignment #4B: Upload to 
connex by Tues. Nov. 26, 11:55pm.   
 I gave you a program for generating 
random MST problems for testing.   
Written Assignment #5: due Wed. Dec. 4, 
beginning of class.  
Please take the time to give some 
feedback to your lab instructor. 
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My random spanning tree problem generator 
will crash if your computer does not have 
enough space. 
To ask for less space: 
#define NMAX 1024 
change to 
#define NMAX 128 
and recompile.  
To get more space, on unix/csh: 
limit stacksize unlimited 
under cygwin: 
set ulimit –s unlimited 
Google for instructions for other machines. 



4 

Minimum weight spanning tree: 

Put a non-negative weight on each edge. 

Weight of a tree: sum of weights of its 
edges. 

Problem: find a spanning tree of graph G 
with minimum weight. 

Kruskal’s algorithm: sort edges by weight. 

Then for each edge: add it to the tree if 
its endpoints are in different components.  
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Edge weights:  

1, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 21 
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A throwaway approach for a researcher: 

Presort edges by weight using a system 
sort (mergeSort) before using them for 
input to the program. 

To help ensure correctness- use a flat 
union/find. 

 

How much time does this approach take? 
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The Dijkstra/Prim algorithm for finding a 
minimum weight spanning tree (MST). 

We have already seen Kruskal’s algorithm.  

The Dijkstra/Prim algorithm is a second 
approach. A very similar algorithm can be 
used to find a shortest path from a fixed 
vertex s to all the other vertices in the 
graph. 
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High level description: 

Put a vertex in the tree.  

Repeat  

1.  Let e be a minimum weight edge 
from a tree vertex to a vertex not in 
the tree.  

 2.  Add e to T and update the data 
structures.  

Until n-1 edges have been selected.  

 



The Muddy City Problem 

Pave roads starting at my 
house without getting muddy. 
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Crucial Observation: Consider the edges 
which go from tree vertices to a vertex v 
which is not yet in the tree: only the 
minimum weight one is a candidate for 
adding to the MST.  
The data structures used to keep track of 
the minimum weight edge from each tree 
vertex to a non-tree vertex are:  
tree[i]= true if i is in the tree and false 
otherwise.  
min_wt[i]= weight of minimum weight edge 
to vertex i  
closest[i]= the vertex in the tree which is 
closest to vertex i.  
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Initialization:  
 

for (i=0; i < n; i++) 

{ 

      min_wt[i]= maximum weight +1;   //  

      closest[i]= -1;          // NULL =   

      tree[i]= false; 

} 
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To add vertex i to the tree:  
tree[i]= true    
for each neighbour j of i do  
{ 
    if ( not tree[j]) then  
        if min_wt[j] > the weight of edge (i,j)  
        {  
              min_wt[j]= weight of edge (i,j)        
              closest[j]= i     
         }  
} 
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To choose the minimum weight edge from 
a tree vertex to a vertex not in the tree, 
we can simply scan through the min_wt 
values for each of the non-tree vertices 
and select the minimum in O(n) time.  
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Example: 
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Put vertex a 
into the tree 
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Consider edges 
next to a and 
record if less 
than min wt 
edges 
to  
those 
vertices 



17 

Put vertex d 
into the tree 
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Consider edges 
next to d and 
record if less 
than min wt 
edges 
to  
those 
vertices 
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Put vertex b 
into the tree 
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Consider edges 
next to b and 
record if less 
than min wt 
edges 
to  
those 
vertices 
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Edge (b,e) is 
worse so do 
not record 
it. 
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Put vertex e 
into the tree 
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Consider edges 
next to e and 
record if less 
than min wt 
edges 
to  
those 
vertices 
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Edge (c,e) is 
better so it 
Replaces 
edge (a,c) 
as the 
best  
option  
for  
getting 
to c from  
a tree 
vertex 



25 

MST: 

Put vertex e 
into the tree 
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High level description: 

Put a vertex in the tree.  

Repeat  

1.  Let e be a minimum weight edge 
from a tree vertex to a vertex not in 
the tree.  

 2.  Add e to T and update the data 
structures.  

Until n-1 edges have been selected.  

 



27 

Time complexity: Initialization: θ(n) 

The outer loop is repeated n-1 times.  

Step 1: θ(n) at each iteration for a total 
of θ(n2).  

Step 2: takes no more than O(m) time in 
total (amortized analysis) if we use 
adjacency lists or O(n2) time with 
adjacency matrices because the 
neighbours of a vertex are considered at 
most one time.  

The total amount of work is in θ(n2).  
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Under the comparison model, Kruskal’s 
algorithm is θ(m log2 m) in the worst case. 

Thought question:  
When is the Dijkstra/Prim algorithm 
which is θ(n2) faster than Kruskal's 
algorithm which is θ(m log m)?  

 


