
1

1. Draw the union find
data structure after the
weighted union
W_UNION(0,8).

Use a weighted
union that calls a
collapsing find.

2. What is in the
parent array after
the union?

2

Final exam tutorial time:
Thursday Dec. 5: from 11am until all
questions are answered. ECS 116.
Programming Assignment #4B: Upload to
connex by Tues. Nov. 26, 11:55pm.
 I gave you a program for generating
random MST problems for testing.
Written Assignment #5: due Wed. Dec. 4,
beginning of class.
Please take the time to give some
feedback to your lab instructor.

3

My random spanning tree problem generator
will crash if your computer does not have
enough space.
To ask for less space:
#define NMAX 1024
change to
#define NMAX 128
and recompile.
To get more space, on unix/csh:
limit stacksize unlimited
under cygwin:
set ulimit –s unlimited
Google for instructions for other machines.

4

Minimum weight spanning tree:

Put a non-negative weight on each edge.

Weight of a tree: sum of weights of its
edges.

Problem: find a spanning tree of graph G
with minimum weight.

Kruskal’s algorithm: sort edges by weight.

Then for each edge: add it to the tree if
its endpoints are in different components.

5

Edge weights:

1, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 21

6

A throwaway approach for a researcher:

Presort edges by weight using a system
sort (mergeSort) before using them for
input to the program.

To help ensure correctness- use a flat
union/find.

How much time does this approach take?

7

The Dijkstra/Prim algorithm for finding a
minimum weight spanning tree (MST).

We have already seen Kruskal’s algorithm.

The Dijkstra/Prim algorithm is a second
approach. A very similar algorithm can be
used to find a shortest path from a fixed
vertex s to all the other vertices in the
graph.

8

High level description:

Put a vertex in the tree.

Repeat

1. Let e be a minimum weight edge
from a tree vertex to a vertex not in
the tree.

 2. Add e to T and update the data
structures.

Until n-1 edges have been selected.

The Muddy City Problem

Pave roads starting at my
house without getting muddy.

10

Crucial Observation: Consider the edges
which go from tree vertices to a vertex v
which is not yet in the tree: only the
minimum weight one is a candidate for
adding to the MST.
The data structures used to keep track of
the minimum weight edge from each tree
vertex to a non-tree vertex are:
tree[i]= true if i is in the tree and false
otherwise.
min_wt[i]= weight of minimum weight edge
to vertex i
closest[i]= the vertex in the tree which is
closest to vertex i.

11

Initialization:

for (i=0; i < n; i++)

{

 min_wt[i]= maximum weight +1; // 

 closest[i]= -1; // NULL = 

 tree[i]= false;

}

12

To add vertex i to the tree:
tree[i]= true
for each neighbour j of i do
{
 if (not tree[j]) then
 if min_wt[j] > the weight of edge (i,j)
 {
 min_wt[j]= weight of edge (i,j)
 closest[j]= i
 }
}

13

To choose the minimum weight edge from
a tree vertex to a vertex not in the tree,
we can simply scan through the min_wt
values for each of the non-tree vertices
and select the minimum in O(n) time.

14

Example:

15

Put vertex a
into the tree

16

Consider edges
next to a and
record if less
than min wt
edges
to
those
vertices

17

Put vertex d
into the tree

18

Consider edges
next to d and
record if less
than min wt
edges
to
those
vertices

19

Put vertex b
into the tree

20

Consider edges
next to b and
record if less
than min wt
edges
to
those
vertices

21

Edge (b,e) is
worse so do
not record
it.

22

Put vertex e
into the tree

23

Consider edges
next to e and
record if less
than min wt
edges
to
those
vertices

24

Edge (c,e) is
better so it
Replaces
edge (a,c)
as the
best
option
for
getting
to c from
a tree
vertex

25

MST:

Put vertex e
into the tree

26

High level description:

Put a vertex in the tree.

Repeat

1. Let e be a minimum weight edge
from a tree vertex to a vertex not in
the tree.

 2. Add e to T and update the data
structures.

Until n-1 edges have been selected.

27

Time complexity: Initialization: θ(n)

The outer loop is repeated n-1 times.

Step 1: θ(n) at each iteration for a total
of θ(n2).

Step 2: takes no more than O(m) time in
total (amortized analysis) if we use
adjacency lists or O(n2) time with
adjacency matrices because the
neighbours of a vertex are considered at
most one time.

The total amount of work is in θ(n2).

28

Under the comparison model, Kruskal’s
algorithm is θ(m log2 m) in the worst case.

Thought question:
When is the Dijkstra/Prim algorithm
which is θ(n2) faster than Kruskal's
algorithm which is θ(m log m)?

