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Introduction to NP-completeness 

All the algorithms we have studied so far run in 
polynomial time [O(nc) for some constant c]. 

There are lots of other interesting and important 
problems for which we do not have polynomial time 
solutions.  
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Table 1: Comparing polynomial and exponential time complexity.  

Assume a problem of size one takes 0.000001 seconds (1 microsecond).  

Size n  

10 20 30 40 50 60 

n 0.00001 second 0.00002 second 0.00003 second 0.00004 second 0.00005 second 0.00006 second 

n2 0.0001 second 0.0004 second 0.0009 second 0.0016 second 0.0025 second 0.0036 second 

n3 0.001 second 0.008 second 0.027 second 0.064 second 0.125 second 0.216 second 

n5 0.1 second 3.2 second 24.3 second 1.7 minutes 5.2 minutes 13.2 minutes 

2n 0.001 second 1.0 second 17.9 minutes 12.7 days 35.7 years 366 centuries 

3n 0.059 second 58 minutes 6.5 years 3855 centuries 2*108 centuries 
1.3*1013 

centuries 

(from M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to 

the Theory of NP-completeness, W. H. Freeman, New York, 1979.)  
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Time 

Complexity 

function 

With present 

computer 

With computer 

100 times faster 

With computer 1000 

times faster 

n N1 100 N1 1000 N1 

n2 N2 10 N2 31.6 N2 

n3 N3 4.46 N3 10 N3 

n5 N4 2.5 N4 3.98 N4 

2n N5 N5+6.64 N5+9.97 

3n N6 N6+4.19 N6+6.29 

Table 2: Effect of improved technology on several polynomial and 

exponential time algorithms. The following table represents the size of the 

largest problem instance solvable in 1 hour.  

 

(from M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to 

the Theory of NP-completeness, W. H. Freeman, New York, 1979.)  
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Class P 

A decision problem is a yes/no question. 

A decision problem is in the class P  if there 
is a polynomial time algorithm for solving it.  

Polynomial time:  O(nc) for some constant c.  
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Example problem which is in P: 

Minimum Weight Spanning Tree 

Input: Graph G, integer k. 

Question:  Does G have a spanning tree of weight at 
most k?  

If you are provided 
with a tree with 
weight at most k as 
part of the solution, 
the answer can be 
verified in O(n2) 
time.  
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Class NP 

A decision problem (yes/no question) is in the 
class NP if it has a nondeterministic polynomial 
time algorithm. Informally, such an algorithm:  

1. Guesses a solution (nondeterministically).  

2. Checks deterministically in polynomial time 
that the answer is correct.  

Or equivalently, when the answer is "yes", there 
is a certificate (a solution meeting the criteria) 
that can be verified in polynomial time 
(deterministically). 
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Picture from: http://mathoverflow.net/faq 

Hamilton Cycle is in NP: Input graph G. 

Does G have a 
Ham. cycle? 

Certificate: 

 1,   2,  3,   5,  

 6,   7, 11, 12,  

10,  8,   9,   4 

http://www.flickr.com/photos/edwynn/5359590467/
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Does G have a 
Ham. cycle? 

Certificate: 

0, 1, 2, 11, 10, 

9, 8, 7, 6, 5,  

14, 15, 16, 17, 

18, 19, 12, 13, 

3, 4 

Hamilton Cycle is in NP: Input graph G. 
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Independent Set is in NP: Given a graph G 
and integer k, does G have an independent 
set of order k? 

Certificate: 

2, 3, 8 

Vertices u and v 
are independent 
if edge (u, v) is 
not in G. 
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Perfect 
matching: 

(a, f) 

(b, g) 

(c, h) 

(d, i) 

(e, j) 
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Does P= NP? the Clay Mathematics 
Institute has offered a $1 million US prize 
for the first correct proof. 

Some problems in NP not known to be in P: 

Hamilton Path/Cycle 

Independent Set 

Satisfiability 

Note: Matching is in P. Learn more in a 
graph algorithms class. 
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NP-completeness 

I can't find an efficient algorithm,  

I guess I'm just too dumb.   
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I can't find an efficient 
algorithm, because no such 
algorithm is possible.  
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I can't find an efficient algorithm, but neither can all 
these famous people.  
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NP-complete Problems 

The class of problems in NP which are the 
"hardest" are called the NP-complete 
problems.  

A problem Q in NP is NP-complete if the 
existence of a polynomial time algorithm 
for Q implies the existence of a polynomial 
time algorithm for all problems in NP.  

Steve Cook in 1971 proved that SAT is NP-
complete. Proof: you will see this if you 
take CSC 320 from me. 
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Bible for NP-
completeness: 

M. R. Garey and D. 
S. Johnson, 
Computers and 
Intractability: A 
Guide to the 
Theory of NP-
Completness,  W. 
H. Freeman, 1st 
ed. (1979). 
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3-COLOURING:  

Input: Graph G 

Question: Does there exist a way to 3-colour the 
vertices of G so that adjacent vertices are 
different colours? 

1.What could you use 
for a certificate for 
the 3-colouring 
problem? 
2. Give the pseudo code 
for a polynomial time 
algorithm for checking 
your certificate. 

 

 

To prove this problem is in NP 
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SAT (Satisfiability)  

Variables: u1, u2, u3, ... uk.  

A literal is a variable ui or the negation of 
a variable ¬ ui.  

If u is set to true then ¬ u is false and if u 
is set to false then ¬ u is true.  

A clause is a set of literals. A clause is 
true if at least one of the literals in the 
clause is true.  

The input to SAT is a collection of clauses.  
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SAT (Satisfiability) 

The output is the answer to: Is there an 
assignment of true/false to the variables 
so that every clause is satisfied (satisfied 
means the clause is true)?  

If the answer is yes, such an assignment 
of the variables is called a truth 
assignment.  

SAT is in NP: Certificate is true/false 
value for each variable in satisfying 
assignment. 
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3-SAT: Every clause has exactly 3 
literals. 
 
Example of a 3-SAT Problem: 
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A set S  V(G) is a vertex cover if every 
edge of G has at least one vertex in S. 

Blue: vertex cover 

Red: independent set 

VERTEX COVER: 

Given: G, k 

Question: Does G 
have a vertex cover 
of order k? 
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Theorem: Vertex Cover is NP-complete. 

Proof: Certificate: vertex numbers of 
vertices in the vertex cover. To check: 

for (i=0; i < n; i++) cover[i]= 0; 

for  (i=0; i < k; i++)   

{    scanf(“%d”, &t);  

     if (t < 0 || t >= n)  

           {printf(“Bad cover.\n”); exit(0);} 

     else  cover[t]= 1;  

} 

 

  

  

Read in certificate. 
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for (i=0; i < n; i++) { 

   for (j=i+1; j< n; j++) { 

        if (A[i][j]){ 

            if (cover[i]==0 && cover[j]==0)  

            {  printf(“Bad cover.\n”); exit(0); } 

         } 

    } 

} 

printf(“Good cover\n”); 

 

   

Make sure each 
edge is covered. 
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Pictures from: 
http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2001/CW/npproof.html 

To solve 3-SAT using vertex cover: 

1. For each literal xi, include: 

 2. For each clause  (xi, xj, xk) use a 
gadget:   

Each white vertex 
connects to the 
corresponding green 
one.  
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3-SAT Problem: 

(x1 or x1 or x2) AND (¬x1 or ¬ x2 or ¬ x2) 
AND (¬x1 or x2 or x2) 
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At least one vertex from  

is in the vertex cover. 

For each gadget, at least 2 vertices are in 
the vertex cover: 

Number of variables: n 

Number of clauses: m 

When is there a vertex 
cover of order n + 2m? 
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Put vertices corresponding to true 
variables in the vertex cover.  
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Satisfying assignment: Each clause has at 
least one true variable. Put two other 
vertices into the vertex cover: 

So each truth assignment corresponds to 
a vertex cover of order n + 2m. 
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Any vertex cover of order n + 2m corresponds to a 
satisfying assignment because we can only select at 
most one of x and ¬x (these are the true variables). 
The true variables must satisfy each clause since at 
most 2 vertices can be selected from each clause 
gadget. 


