

Applications to demonstrate how the process works

Introduction to NP-completeness

All the algorithms we have studied so far run in polynomial time $[O(n^c)$ for some constant c].

There are lots of other interesting and important problems for which we do not have polynomial time solutions.

Table 1: Comparing polynomial and exponential time complexity.Assume a problem of size one takes 0.000001 seconds (1 microsecond).

	Size n					
	10	20	30	40	50	60
n	0.00001 second	0.00002 second	0.00003 second	0.00004 second	0.00005 second	0.00006 second
n²	0.0001 second	0.0004 second	0.0009 second	0.0016 second	0.0025 second	0.0036 second
n ³	0.001 second	0.008 second	0.027 second	0.064 second	0.125 second	0.216 second
n ⁵	0.1 second	3.2 second	24.3 second	1.7 minutes	5.2 minutes	13.2 minutes
2 ⁿ	0.001 second	1.0 second	17.9 minutes	12.7 days	35.7 years	366 centuries
3 ⁿ	0.059 second	58 minutes	6.5 years	3855 centuries	2*10 ⁸ centuries	1.3*10 ¹³ centuries

(from M. R. Garey and D. S. Johnson, *Computers and Intractability: A Guide to the Theory of NP-completeness*, W. H. Freeman, New York, 1979.)

Table 2: Effect of improved technology on several polynomial andexponential time algorithms. The following table represents the size of thelargest problem instance solvable in 1 hour.

Time Complexity function	With present computer	With computer 100 times faster	With computer 1000 times faster
n	N1	100 N1	1000 N1
n²	N2	10 N2	31.6 N2
n ³	N3	4.46 N3	10 N3
n ⁵	N4	2.5 N4	3.98 N4
2 ⁿ	N5	N5+6.64	N5+9.97
3 ⁿ	N6	N6+4.19	N6+6.29

(from M. R. Garey and D. S. Johnson, *Computers and Intractability: A Guide to the Theory of NP-completeness*, W. H. Freeman, New York, 1979.)

Class P

A decision problem is a yes/no question.

- A decision problem is *in the class P* if there is a polynomial time algorithm for solving it.
- Polynomial time: $O(n^c)$ for some constant c.

Example problem which is in P:

Minimum Weight Spanning Tree

Input: Graph G, integer k.

Question: Does G have a spanning tree of weight at most k?

If you are provided with a tree with weight at most k as part of the solution, the answer can be verified in $O(n^2)$ time.

Class NP

A decision problem (yes/no question) is in the *class NP* if it has a nondeterministic polynomial time algorithm. Informally, such an algorithm:

1. Guesses a solution (nondeterministically).

2. Checks deterministically in polynomial time that the answer is correct.

Or equivalently, when the answer is "yes", there is a certificate (a solution meeting the criteria) that can be verified in polynomial time (deterministically). Hamilton Cycle is in NP: Input graph G.

Does G have a Ham. cycle? Certificate: 1, 2, 3, 5, 6, 7, 11, 12, 10, 8, 9, 4

Picture from: http://mathoverflow.net/faq₈

Hamilton Cycle is in NP: Input graph G.

Does G have a Ham. cycle? Certificate: 0, 1, 2, 11, 10, 9,8,7,6,5, 14, 15, 16, 17, 18, 19, 12, 13, 3,4

Independent Set is in NP: Given a graph G and integer k, does G have an independent set of order k?

Vertices u and v are independent if edge (u, v) is not in G.

Certificate: 2, 3, 8

Perfect matching: (a, f) (b,g) (c, h) (d, i) (e, j)

Does P= NP? the Clay Mathematics Institute has offered a \$1 million US prize for the first correct proof.

Some problems in NP not known to be in P:

- Hamilton Path/Cycle
- Independent Set
- Satisfiability

Note: Matching is in P. Learn more in a graph algorithms class.

NP-completeness

I can't find an efficient algorithm,

I guess I'm just too dumb.

I can't find an efficient algorithm, because no such algorithm is possible.

I can't find an efficient algorithm, but neither can all these famous people.

NP-complete Problems

The class of problems in NP which are the "hardest" are called the *NP-complete* problems.

A problem Q in NP is NP-complete if the existence of a polynomial time algorithm for Q implies the existence of a polynomial time algorithm for all problems in NP.

Steve Cook in 1971 proved that SAT is NPcomplete. Proof: you will see this if you take CSC 320 from me. Bible for NPcompleteness:

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completness, W. H. Freeman, 1st ed. (1979).

A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

3-COLOURING: To prove this problem is in NP

Input: Graph G

Question: Does there exist a way to 3-colour the vertices of G so that adjacent vertices are different colours?

1. What could you use for a certificate for the 3-colouring problem? 2. Give the pseudo code for a polynomial time algorithm for checking your certificate.

SAT (Satisfiability)

- **Variables:** $u_1, u_2, u_3, ..., u_k$.
- A literal is a variable u_i or the negation of a variable $\neg u_i$.
- If u is set to *true* then \neg u is *false* and if u is set to *false* then \neg u is *true*.
- A clause is a set of literals. A clause is *true* if at least one of the literals in the clause is *true*.
- The input to SAT is a collection of clauses.

SAT (Satisfiability)

The output is the answer to: Is there an assignment of *true/false* to the variables so that every clause is satisfied (satisfied means the clause is *true*)?

If the answer is yes, such an assignment of the variables is called a **truth** assignment.

SAT is in NP: Certificate is true/false value for each variable in satisfying assignment.

3-SAT: Every clause has exactly 3 literals.

Example of a 3-SAT Problem:

(x OR y OR z) AND (x OR \overline{y} OR z) AND (x OR y OR \overline{z}) AND (x OR \overline{y} OR \overline{z}) AND (\overline{x} OR y OR z) AND (\overline{x} OR \overline{y} OR \overline{z})

History of NP-completeness Reductions

A set $S \subseteq V(G)$ is a vertex cover if every edge of G has at least one vertex in S.

VERTEX COVER:

Given: G, k

Question: Does G have a vertex cover of order k?

Blue: vertex cover

Red: independent set

Theorem: Vertex Cover is NP-complete. Proof: Certificate: vertex numbers of vertices in the vertex cover. To check: for (i=0; i < n; i++) cover[i]= 0; for (i=0; i < k; i++) Read in certificate. scanf(``%d", &t); { if (t < 0 || t >= n){printf("Bad cover.\n"); exit(0);} else cover[t]= 1;

for (i=0; i < n; i++) { Make sure each for (j=i+1; j< n; j++) { edge is covered. if (A[i][j]){ if (cover[i]==0 && cover[j]==0) { printf("Bad cover.\n"); exit(0); } } } printf("Good cover\n");

To solve 3-SAT using vertex cover:

- 1. For each literal x_i, include:
- 2. For each clause (x_i, x_j, x_k) use a gadget:

Each white vertex connects to the corresponding green one.

Xi

Xi

Pictures from: http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2001/CW/npproof.html

3-SAT Problem:

(x1 or x1 or x2) AND (¬x1 or ¬ x2 or ¬ x2) AND (¬x1 or x2 or x2)

At least one vertex from is in the vertex cover.

For each gadget, at least 2 vertices are in the vertex cover:

Number of variables: n Number of clauses: m

When is there a vertex cover of order n + 2m?

Put vertices corresponding to true variables in the vertex cover.

Satisfying assignment: Each clause has at least one true variable. Put two other vertices into the vertex cover:

So each truth assignment corresponds to a vertex cover of order n + 2m.

Any vertex cover of order n + 2m corresponds to a satisfying assignment because we can only select at most one of x and $\neg x$ (these are the true variables). The true variables must satisfy each clause since at most 2 vertices can be selected from each clause gadget.

