
1

2

Introduction to NP-completeness

All the algorithms we have studied so far run in
polynomial time [O(nc) for some constant c].

There are lots of other interesting and important
problems for which we do not have polynomial time
solutions.

3

Table 1: Comparing polynomial and exponential time complexity.

Assume a problem of size one takes 0.000001 seconds (1 microsecond).

Size n

10 20 30 40 50 60

n 0.00001 second 0.00002 second 0.00003 second 0.00004 second 0.00005 second 0.00006 second

n2 0.0001 second 0.0004 second 0.0009 second 0.0016 second 0.0025 second 0.0036 second

n3 0.001 second 0.008 second 0.027 second 0.064 second 0.125 second 0.216 second

n5 0.1 second 3.2 second 24.3 second 1.7 minutes 5.2 minutes 13.2 minutes

2n 0.001 second 1.0 second 17.9 minutes 12.7 days 35.7 years 366 centuries

3n 0.059 second 58 minutes 6.5 years 3855 centuries 2*108 centuries
1.3*1013

centuries

(from M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to

the Theory of NP-completeness, W. H. Freeman, New York, 1979.)

4

Time

Complexity

function

With present

computer

With computer

100 times faster

With computer 1000

times faster

n N1 100 N1 1000 N1

n2 N2 10 N2 31.6 N2

n3 N3 4.46 N3 10 N3

n5 N4 2.5 N4 3.98 N4

2n N5 N5+6.64 N5+9.97

3n N6 N6+4.19 N6+6.29

Table 2: Effect of improved technology on several polynomial and

exponential time algorithms. The following table represents the size of the

largest problem instance solvable in 1 hour.

(from M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to

the Theory of NP-completeness, W. H. Freeman, New York, 1979.)

5

Class P

A decision problem is a yes/no question.

A decision problem is in the class P if there
is a polynomial time algorithm for solving it.

Polynomial time: O(nc) for some constant c.

6

Example problem which is in P:

Minimum Weight Spanning Tree

Input: Graph G, integer k.

Question: Does G have a spanning tree of weight at
most k?

If you are provided
with a tree with
weight at most k as
part of the solution,
the answer can be
verified in O(n2)
time.

7

Class NP

A decision problem (yes/no question) is in the
class NP if it has a nondeterministic polynomial
time algorithm. Informally, such an algorithm:

1. Guesses a solution (nondeterministically).

2. Checks deterministically in polynomial time
that the answer is correct.

Or equivalently, when the answer is "yes", there
is a certificate (a solution meeting the criteria)
that can be verified in polynomial time
(deterministically).

8
Picture from: http://mathoverflow.net/faq

Hamilton Cycle is in NP: Input graph G.

Does G have a
Ham. cycle?

Certificate:

 1, 2, 3, 5,

 6, 7, 11, 12,

10, 8, 9, 4

http://www.flickr.com/photos/edwynn/5359590467/

9

Does G have a
Ham. cycle?

Certificate:

0, 1, 2, 11, 10,

9, 8, 7, 6, 5,

14, 15, 16, 17,

18, 19, 12, 13,

3, 4

Hamilton Cycle is in NP: Input graph G.

10

Independent Set is in NP: Given a graph G
and integer k, does G have an independent
set of order k?

Certificate:

2, 3, 8

Vertices u and v
are independent
if edge (u, v) is
not in G.

11

Perfect
matching:

(a, f)

(b, g)

(c, h)

(d, i)

(e, j)

12

Does P= NP? the Clay Mathematics
Institute has offered a $1 million US prize
for the first correct proof.

Some problems in NP not known to be in P:

Hamilton Path/Cycle

Independent Set

Satisfiability

Note: Matching is in P. Learn more in a
graph algorithms class.

13

NP-completeness

I can't find an efficient algorithm,

I guess I'm just too dumb.

14

I can't find an efficient
algorithm, because no such
algorithm is possible.

15

I can't find an efficient algorithm, but neither can all
these famous people.

16

NP-complete Problems

The class of problems in NP which are the
"hardest" are called the NP-complete
problems.

A problem Q in NP is NP-complete if the
existence of a polynomial time algorithm
for Q implies the existence of a polynomial
time algorithm for all problems in NP.

Steve Cook in 1971 proved that SAT is NP-
complete. Proof: you will see this if you
take CSC 320 from me.

17

Bible for NP-
completeness:

M. R. Garey and D.
S. Johnson,
Computers and
Intractability: A
Guide to the
Theory of NP-
Completness, W.
H. Freeman, 1st
ed. (1979).

18

3-COLOURING:

Input: Graph G

Question: Does there exist a way to 3-colour the
vertices of G so that adjacent vertices are
different colours?

1.What could you use
for a certificate for
the 3-colouring
problem?
2. Give the pseudo code
for a polynomial time
algorithm for checking
your certificate.

To prove this problem is in NP

19

SAT (Satisfiability)

Variables: u1, u2, u3, ... uk.

A literal is a variable ui or the negation of
a variable ¬ ui.

If u is set to true then ¬ u is false and if u
is set to false then ¬ u is true.

A clause is a set of literals. A clause is
true if at least one of the literals in the
clause is true.

The input to SAT is a collection of clauses.

20

SAT (Satisfiability)

The output is the answer to: Is there an
assignment of true/false to the variables
so that every clause is satisfied (satisfied
means the clause is true)?

If the answer is yes, such an assignment
of the variables is called a truth
assignment.

SAT is in NP: Certificate is true/false
value for each variable in satisfying
assignment.

21

3-SAT: Every clause has exactly 3
literals.

Example of a 3-SAT Problem:

22

23

A set S  V(G) is a vertex cover if every
edge of G has at least one vertex in S.

Blue: vertex cover

Red: independent set

VERTEX COVER:

Given: G, k

Question: Does G
have a vertex cover
of order k?

24

Theorem: Vertex Cover is NP-complete.

Proof: Certificate: vertex numbers of
vertices in the vertex cover. To check:

for (i=0; i < n; i++) cover[i]= 0;

for (i=0; i < k; i++)

{ scanf(“%d”, &t);

 if (t < 0 || t >= n)

 {printf(“Bad cover.\n”); exit(0);}

 else cover[t]= 1;

}

Read in certificate.

25

for (i=0; i < n; i++) {

 for (j=i+1; j< n; j++) {

 if (A[i][j]){

 if (cover[i]==0 && cover[j]==0)

 { printf(“Bad cover.\n”); exit(0); }

 }

 }

}

printf(“Good cover\n”);

Make sure each
edge is covered.

26
Pictures from:
http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2001/CW/npproof.html

To solve 3-SAT using vertex cover:

1. For each literal xi, include:

 2. For each clause (xi, xj, xk) use a
gadget:

Each white vertex
connects to the
corresponding green
one.

27

3-SAT Problem:

(x1 or x1 or x2) AND (¬x1 or ¬ x2 or ¬ x2)
AND (¬x1 or x2 or x2)

28

At least one vertex from

is in the vertex cover.

For each gadget, at least 2 vertices are in
the vertex cover:

Number of variables: n

Number of clauses: m

When is there a vertex
cover of order n + 2m?

29

Put vertices corresponding to true
variables in the vertex cover.

30

Satisfying assignment: Each clause has at
least one true variable. Put two other
vertices into the vertex cover:

So each truth assignment corresponds to
a vertex cover of order n + 2m.

31

Any vertex cover of order n + 2m corresponds to a
satisfying assignment because we can only select at
most one of x and ¬x (these are the true variables).
The true variables must satisfy each clause since at
most 2 vertices can be selected from each clause
gadget.

