
1

Draw the directed graph that represents
the flat union find data structure defined
by this parent array:

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 5 5 0 8 0

Show the updated parent array and
also draw a picture after

flat_union(7, 4).

Assignment 4A is due on Fri. Nov. 15 at
the beginning of class.

Assignment 4B is available: upload to
connex by Tues. Nov. 26, 11:55pm.

Please read the assignment specs before
class on Friday.

You will have to choose a union/find to
implement for assignment 4B.

3

Union/find: dynamic data structure for
keeping track of the connected
components of a graph.

4

The UNION/FIND data structure is a
dynamic data structure for graphs used to
keep track of the connected components.

It has 2 routines:

FIND(u): returns the name of the
component containing vertex u

UNION(u, v): unions together the
components containing u and v
(corresponding to an addition of edge (u,v)
to the graph).

5

Each vertex starts out in a component by
itself:

Go through adjacency list or matrix
adding each edge we encounter.

6

Approach 1 (Flat scheme): parent[i]= min
number of vertex in same component as
vertex i.

7

The initialization for Approaches 1 and 2 is
the same. Each vertex is in a component by
itself whose name is that of the vertex.
public class UnionFind
{
 int n;
 int [] parent;
 public UnionFind(int nv)
 { int i; n= nv;
 parent= new int[n];
 for (i=0; i < n; i++)
 parent[i]=i;
 }

8

Approach 1: A Flat Scheme
The simplest scheme is to choose the
vertex with minimum label to be the name
of the component. We maintain an array
parent which records the name of the
component for each vertex.
The FIND function is:
 public int flat_find(int u)
{
 return(parent[u]);
}

9

The UNION function:
public void flat_union(int u, int v)
{ int i, min, max;
 if (parent[u] == parent[v]) return;
 if (parent[u] < parent[v])
 { min= parent[u]; max=parent[v]; }
 else
 { max= parent[u]; min=parent[v]; }

 for (i=0; i < n; i++)
 if (parent[i]== max)
 parent[i]= min;
 }
}

10

Approach 2: Slower FIND/Faster UNION
A second approach is to be lazy with the union
operator:
 public void lazy_union(int u, int v)
{
 int pu, pv;

 pu= lazy_find(u);
 pv= lazy_find(v);
 if (pu != pv)
 parent[pu]= pv;
}

11

What is in the parent array which
corresponds to this picture of a
union/find data structure (Approach 2):

12

We need to traverse the structure to find
the representative vertex for the
component:

 int lazy_find(int u)
{
 while (parent[u] != u)
 {
 u=parent[u];
 }
 return(u);
}

13

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 5 5 0 8 0

Show the updated parent array and
also draw a picture after
lazy_union(7, 4).

14

Approach 3: Balancing the complexities of
UNION and FIND
The find for Approach 3 is similar to that for
Approach 2. However, by being more careful with
the UNION operation, we can reduce the
complexity of the FIND.
The parent operates as before except now
instead of storing parent[v]=v for a root node, we
store (-1) * [the number of nodes in the
component whose representative is v].
public UnionFind(int nv)

{ int i;

 n= nv;

 parent= new int[n];

 for (i=0; i < n; i++)

 parent[i]= -1;

}

15

The parent operates as before except now
instead of storing parent[v]=v for a root node,
we store (-1) * [the number of nodes in the
component whose representative is v].
The find for weighted union becomes:
int w_find(int u)
{
 while (parent[u] >= 0)
 {
 u=parent[u];
 }
 return(u);
}

16

 public void w_union(int u, int v)
{ int pu, pv, nu, nv;

 pu= w_find(u);
 pv= w_find(v);
 if (pu == pv) return;

 nu= -1 * parent[pu];
 nv= -1 * parent[pv];

WEIGHTED UNION:

17

 if (nu < nv)
 { // pv is the new root.
 parent[pv]+= parent[pu]; // -1*(# nodes)
 parent[pu]= pv;
 }
 else
 { // pu is the new root.
 parent[pu]+= parent[pv]; // -1 *(#nodes)
 parent[pv]= pu;
 }
}

With this modification, UNION (w_union) and
FIND (c_find) each take O(log n) in the worst
case.

18

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 5 5 0 8 0

Show the updated parent array and
also draw a picture after
w_union(7, 4).

How is this changed if weighted union is used?

19

1. What is in the parent array which
corresponds to this picture of a
union/find data structure using weighted
union?

2. Show the
picture and
parent array
after
w_union(7,5)

20

From wikipedia:

Path compression (collapsing find), is a way of
flattening the structure of the tree whenever
Find is used on it. The idea is that each node
visited on the way to a root node may as well be
attached directly to the root node; they all share
the same representative. To effect this, as Find
recursively traverses up the tree, it changes each
node's parent reference to point to the root that
it found. The resulting tree is much flatter,
speeding up future operations not only on these
elements but on those referencing them, directly
or indirectly

21

Collapsing find:

Add a stack to the class:
public class UnionFind
{ int n;
 int [] parent; int [] stack;
 public UnionFind(int nv)
 {
 int i;
 parent= new int[n];
 stack= new int[n];
 for (i=0; i < n; i++)
 parent[i]= -1;
 }

22

int c_find(int u)

{ int v, top;
 top=0;
 while (parent[u] >= 0)
 {
 stack[top]= u; top++;
 u=parent[u];
 }
 while (top > 0)
 {
 top--; v= stack[top];
 parent[v]=u;
 }
 return(u);
}

COLLAPSING
FIND

23

What does the data
structure look like after
calling w-union(2,3)?

Weighted union and collapsing find:

Draw a picture
and give the
parent array.

Note:
w-union(2,3)
calls c-find(2)
and c-find(3).

24

Time complexity (wikipedia):
Weighted union (w_union) and collapsing find
(c_find) complement each other; applied
together, the amortized time per operation is
only O(α(n)), where α(n) is the inverse of the
function f(n) = A(n,n), and A is the extremely
quickly-growing Ackermann function. Since α(n)
is the inverse of this function, α(n) is less than
5 for all remotely practical values of n. Thus,
the amortized running time per operation is
effectively a small constant.

Amortized time complexity: the average time
per operation over a sequence of operations.

