
1

Recursive MaxSort:

public void maxSort(int size)
{ int i, t, maxPos;

if (size <= 1) return;
maxPos=0;
for (i=1; i < size; i++)

if (A[i] >= A[maxPos]) maxPos=i;
t= A[maxPos];
A[maxPos]= A[size-1];
A[size-1] = t;
maxSort(size-1);

}

Derive and
solve
recurrence
relations for:

K(n)= number
of key
comparisons
on a problem
of size n.

S(n)= number
of swaps for
a problem of
size n.

2

for (end= n-1; end > 0; end--)
{ max_pos=0;

for (i= 1; i <= end; i++)
{

if (A[i] >= A[max_pos])
max_pos= i;

}

// Swap the max.
// element with the end.

t= A[max_pos];
A[max_pos]= A[end];
A[end]= t;

}

For the
iterative
approach:
if you think
about it in
terms of the
first
iteration of
the loop and
then solving a
problem of
size n-1 you
get the same
recurrence
relations.

3

Assignment 1B is due at the beginning of class
on Thursday.

Stay after class today if you have questions.

Please turn your submission upside down
before you hand it in and write your name but
not your ID number on the back of the last
page in the upper RH corner. Your name and
ID number should be on the first page.

Assignment 2A Programming: due Thursday
Oct. 12 at 11:55pm.
Assignment 2B: Written: due Monday Oct. 16
at the beginning of class.

4

Mergesort

5

Divide and Conquer

1. Divide the problem into two or more
subproblems.

2. Solve the subproblems.

3. Marry the solutions.

This is one of the most common problem
solving tactics and leads naturally to
recursive algorithms.

6

Merge Sort- with linked lists

[Basis] If the list has size 0 or 1 it is
already sorted so return.

[Divide] Otherwise, split the list into two
lists, list1 and list2, of roughly equal
sizes.

[Conquer] Sort list1 and list2
(recursively).

[Marry solutions] Merge list1 and list2
together to get the answer.

7

Using the data structures for the lab:
class ListNode{

public int data;
public ListNode next;

public ListNode(int x, ListNode ptr)
{

data= x;
next= ptr;

}
}

8

public class LinkedList
{

int n;
ListNode start;
ListNode rear;

public LinkedList()
{

n= 0;
start= null;
rear= null;

}

public class LinkedList // Same as Lab 1
{ int n;

ListNode start;
ListNode rear;

public void mergeSort(int level)
{

LinkedList list1;
LinkedList list2;
int i;

/* A list of size 0 or 1 is already sorted. */

if (n <=1) return;

Code omitted here.

I am assuming for this program, the list is split
into two sublists list1 and list2 the same way you
do it for your reverse method. The list1 has the
first floor(n/2) items and the list2 has the next
ceiling(n/2).

Make sure that in your code:

list1.start, list1.rear, list1.n, and

list2.start, list2.rear, list2.n all have correct
values and that both list1 and list2 are null
terminated.

/* Sort the 2 sublists recursively: */

list1.mergeSort(level+1);

list2.mergeSort(level+1);

/* Merge the two sorted sublists. */
start= null; rear= null;
LinkedList tmp; // Keeps track of list with smallest key
while (list1.start != null && list2.start != null)
{

if (list1.start.data < list2.start.data)
tmp= list1;

else tmp= list2;

if (start == null) start= tmp.start;
else rear.next= tmp.start;

rear= tmp.start;

tmp.start= tmp.start.next;
rear.next= null;

}

// Now append the list that still has
// items in it to the end.

if (list1.start != null)
tmp= list1;

else
tmp = list2;

rear.next= tmp.start;
// Make sure our
// object has a correct rear pointer

rear= tmp.rear;

} // end mergeSort

14

Mergesort

Level 0 : The list to be sorted is:
7 1 5 9 2 4 3 0

Level 0 : Sublist 1.
7 1 5 9

Level 0 : Sublist 2.
2 4 3 0

OUTPUT from levels >= 1 has been deleted.
Level 0 : The 2 sorted lists to merge are:
Level 0 : Sublist 1.

1 5 7 9
Level 0 : Sublist 2.

0 2 3 4
Level 0 : After step 1 of the merging.
Level 0 : Sublist 1.

1 5 7 9
Level 0 : Sublist 2.

2 3 4
Level 0 : The sorted list being created.

0
Level 0 : After step 2 of the merging.
Level 0 : Sublist 1.

5 7 9
Level 0 : Sublist 2.

2 3 4
Level 0 : The sorted list being created.

0 1

Level 0 : After step 3 of the merging.
Level 0 : Sublist 1.

5 7 9
Level 0 : Sublist 2.

3 4
Level 0 : The sorted list being created.

0 1 2
Level 0 : After step 4 of the merging.
Level 0 : Sublist 1.

5 7 9
Level 0 : Sublist 2.

4
Level 0 : The sorted list being created.

0 1 2 3
Level 0 : After step 5 of the merging.
Level 0 : Sublist 1.

5 7 9
Level 0 : Sublist 2.
Level 0 : The sorted list being created.

0 1 2 3 4
Level 0 : The sorted list.

0 1 2 3 4 5 7 9

16

Scatter Plots for Merge Sort:

Taken from: Algorithms in C++ by Sedgewick.

How much work does the Mergesort
algorithm do?

1.Divide the problem into two or more
subproblems.

2.Solve the subproblems.

3.Marry the solutions.

So a recurrence for the time is:

http://www.cs.cmu.edu/~cburch/pgss99/lecture/0721-divide.html

If n= 2k, the computation tree has 2k+1 – 1
nodes, height k, and k+1 levels. So the work
done by mergesort is proportional to

n * (k+1) = n * (log2(n) + 1)  O(n * log2(n))

19

T0(n)= n + 2 T(n/2), T(1)= 1.

T1(n)= 10n + 20 + 2 T(n/2), T(1)= 30

T2(n)= 10n + 20n + 2 T(n/2), T(1)= 30

T0: Used for the time complexity of mergeSort.
T1: If for any n, mergeSort does at most 10n + 20 machine
instructions at the top level of recursion (ignoring those done
by a recursive call), T1(n) is an upper bound on the actual
number of machine instructions.
T2 (n): Upper bound on T1(n).

T0(n) ≤ T1(n) ≤ T2(n) = 30 * T0(n) for all n ≥ 1.
So the actual number of machine instructions T1(n) is in
O(T0(n)).

