
1

Problem of the Day

Assume that n= 2k+1-1.

Solve this recurrence using repeated
substitution showing all your work:

T(n)= (n+1) + 2 T((n-1)/2), T(1)=1.

Hint: These are a lot easier to solve if you
express the equations in terms of k before
starting.

For more of a challenge, solve this one:

T(n)= n + 2 T((n-1)/2), T(1)=1.

2

Announcements

Assignment 2A Programming: due Thursday
Oct. 12 at 11:55pm. Feedback will be given
soon for assignment 1A.

Assignment 2B: Written: due Monday Oct. 16
at the beginning of class.

We have labs this week.

We have no labs next week.

There are no classes on Monday Oct. 9
because it is Thanksgiving.

3

Quicksort
A well-known sorting algorithm developed by C.
A. R. Hoare in 1962 that, on average, makes Θ(n
log n) comparisons to sort n items. However, in
the worst case, it makes Θ(n2) comparisons.
Typically, quicksort is significantly faster in
practice than other Θ(n log n) algorithms,
because its inner loop can be efficiently
implemented on most architectures, and in most
real-world data, it is possible to make design
choices which minimize the probability of
requiring quadratic time.

http://en.wikipedia.org/wiki/Quicksort

4

Quicksort for Linked Lists

1. Choose a key value x to be the pivot.

2. [Divide] Break the problem into three
subproblems:

P1: Keys < x.

P2: Keys equal to x.

P3: Keys > x.

3. [Conquer] Solve the P1 and P3 recursively.

4. [Marry] The answer is that of P1 followed by
P2 followed by P3.

5

Quicksort (Arrays)

1. Choose a key value x to be the pivot.

2. [Divide] Break the problem into three
subproblems:

P1: Keys < x.

P2: The pivot x.

P3: Keys ≥ x.

3. [Conquer] Solve the P1 and P3 recursively.

4. [Marry] The answer is that of P1 followed by
P2 followed by P3.

6

public class QuickSort {

// Quicksort code (modified from Sedgewick)

public static void quicksort(int[] A)
{

shuffle(A); // to guard against worst case

quicksort(A, 0, A.length - 1);
}

http://www.cs.princeton.edu/introcs/42sort/QuickSort.java.html

7

// quicksort A[left] to A[right]

public static void quicksort(int[] A,
int left, int right)

{
if (right <= left) return;

int pivot_pos = partition(A, left, right);

quicksort(A, left, pivot_pos-1);

quicksort(A, pivot_pos+1, right);
}

8

// partition A[left] to A[right]
private static int partition(int [] A,

int left, int right) {
int i = left; int j = right-1;

while (true)
{

while (A[i] < A[right]) {i++;}
while (j > left && A[right] < A[j]) {j--};

if (i >= j) break;
swap(A, i, j); i++; j--;

}
swap(A, i, right); // Put pivot element into place
return i;
}

9

Quicksort

