Suppose that n= 2k -1 for some integer k =1.
1. Solve this recurrence relation:

T(1)=1, and

n—1

otherwise, T(n)= 1 + T(T).

2. Prove that T(n) is 6(f (n)) for a function
f(n) that Is as simple as possible.

Assignment 2A Programming and Assighment 1A
resubmissions are due on Thursday Oct. 12 at
11:55pm.
When you upload your files for Assignment 2A:
1.Make sure you hit SUBMIT EVERY time you
revise your files. There is no harm in doing this
since | have set connex up to allow an unlimited
number of resubmissions.
2.For 2A submissions: make sure that for each of
LinkedList.java and BiglntegerList.java, you only
nave ONE version of each file. Delete old
versions. If you have more than one version
your code will not compile.

Review Lecture 12:

Assignment 1A: Hints for writing good programs
before submitting your programes.

Code submitted for this class should be elegant
and efficient (subject to meeting the constraints
given: reverse should be a divide and conquer
method that splits the list in half).

Midterm tutorial: Tuesday Oct. 17, 7pm-10pm,
Elliott 168.

Assignment 2B Written is due at the beginning
of class on Monday Oct. 16.

In order to not disadvantage the Friday tutorial students with
respect to the midterm exam:

There will be tutorial: Friday Oct. 13

There will be no tutorial: Friday Oct. 20

If you have tutorial on Fridays and cannot attend on Oct. 13,
then you are welcome to attend any one of the other sections:
On Friday Oct 13:

BO6 ECS 258 F 13:30-14:20

BO7 ECS 258 F 14:30-15:20

On Monday Oct. 16:

BO1 ECS 258 M 13:30-14:20

BO2 ECS 258 M 14:30-15:20

BO3 ECS 258 M 15:30-16:20

On Tuesday Oct. 17:

BO4 ECS 258 T 09:30-10:20

BO5 ECS 258 T 10:30-11:20

Slides with gray backgrounds are taken from:
http://algs4.cs.princeton.edu/lectures/14AnalysisOfAlgorithms-2x2.pdf
Copyright © 2000-2016 Robert Sedgewick and Kevin Wayne.

1.4 ANALYSIS OF ALGORITHMS

» mathematical models

Algorithms

osset Sepcawick T Kavay Wavse

hitp://algsd.cs.princeton.edu

http://algs4.cs.princeton.edu/lectures/14AnalysisOfAlgorithms-2x2.pdf

Mathematical models for running time

Total running time: sum of cost x frequency for all operations.
« Need to analyze program to determine set of operations.
« Cost depends on machine, compiler.

« Frequency depends on algorithm, input data.

The Art of The Art of The Art of The Art of
Computer Computer Computcr Computer
Programming Programming Programming Programming
DONALD . KNUTH DONALD 1 KNTH DONALD £ KN DONALD E XNUTH Donald Knuth
1974 Turing Award

In principle, accurate mathematical models are available.

24

Cost of basic operations

Challenge. How to estimate constants.

integer add a+hb 2.1
integer multiply a®*h 2.4
integer divide a/hb 5.4
floating-point add a+hb 4.6
floating-point multiply a®*h 4.2
floating-point divide a/hb 13.5
sine Math.sin(theta) 91.3
arctangent Math.atan2{y, x) 129.0

t Running O5 X on Machook Pro 2.2CHz with 2GE B

Cost of basic operations

Observation. Most primitive operations take constant time.

variable declaration int a g
assignment statement a="hb a
integer compare a<b €3
array element access a[i] £y
array length a.length g
1D array allocation new int[N] cs N Java takes this
2D array allocation new int[N][N] g NI IS (SRR
initializes
arrays.

Caveat. Non-primitive operations often take more than constant time.

N\

novice mistake: abutive itring concatenation 8
26

Example: 1-S5um

(). How many instructions as a function of input size N7

int count = 0;
for (int 1 =0; 1 < N; 1++)
if (a[1] = 0)
count++;

M drrdy SLCESTES

variable declaration 2
assignment statement 2
less than compare N+1
equal to compare N
array access N

incremant Nto2 N

Example: 2-5uM

Q. How many instructions as a function of input size ¥ 7

int count = 0;
for {(int 1 = 0; 1 <= N; 1++)
for {(int § = 1+1; § < N; J++)
if (ali] + a[j] == 0)
count++;

Pf. [n even]

O+1+2+..

1 1
D+142+...+[(N=-1) = EH’ - EH

half of half of
S LI diagaonal

+(N=1] = %H{H-I}

- (3)

10

28

Example: 2-Sum

0. How many instructions as a function of input size N7

int count = 0;
for (Ant 1 = 0; 1 < N; 1++)
for (int j = i+1; § < N; j++)
if (a[i] + a[j] = 0)

count++;

i«
i

O+ 1424

variable declaration N+2
assignment statement N+2
less than compare KLiN+ 1IN+ 2) h
egual to compare K NIN-=-1)
array access N(N-1) i
increment KBLNIN-1)toa NIN=-1) B

+(N=1) = =N(N=1)

ﬁr‘}
2

i
o K -

tedious Lo oount exacthy

11

Simplifying the calculations

*“ It is convenient to have a measure of the amount of work inmvolved
in a computing process, even though it be a very crude one. We may
count up the number of times that various elementary operations are
applied in the whole process and then given them various weights.
We might, for instance, count the number of additions, subtractions,
multiplications, divisions, recording of numbers, and extractions
of figures from tables. In the case of computing with matrices most
of the work consists of multiplications and writing down numbers,
and we shall therefore only attempt to count the number of
multiplications and recordings. * — Alan Turing

ROUNDINGAOFF ERRORS IN MATRIX PROCESSES
My A N TURING

(Natiens! Fhyucol Loboratery, Tedtington, Middhoez)
[Buced v & Nosswior LMY)

AUMMAXY
A rumnher of metwods of solving sots of basnr spmiions sad Erveriing msbriom
e diousod . The Shoory of \he sommeliog oF sevsen brvolved B vrosbipeied S
some of \ha roetbods. In 1 caeen evsewieed. inclading the wel Aroes “Conm
slemnation proooss . A fonad Ahet the ervem sm soreally gotte resderwie: 00
evpanen sl S ap wond soour

12
3

Simplification 1: cost model

Cost model. Use some basic operation as a proxy for running time.

int count = 0;

for (int 1 = 0; 1 < N; 1++)
for {(int 3 = 1+1; § < N; jJ++)
if (ali] + a[j] == 0)
count++;

0+l 424 .. #(N=1] =

| operten | ey ()

variable declaration

N (N =1)

d551gn ment statement N+2
less than compare BN+ DN+ 2)
equal to compare e NN =-1)
array access N{N-1) a— codl model = array accesses
(we aiiume compiber/]vM do not
increment NN -1)ta NIN-1)

aplimize any array acceddss avwayl)

13
32

Simplification 2: tilde notation

« Estimate running time (or memory) as a function of input size N.
- lgnore lower order terms.

— when N is large, terms are negligible
— when N is small, we don't care

Ex 1. NI+ 20N + 16 ~ KN

Ex 2. BN + IDONA & 56 ~ W N2

Ex 3. WBN?-WBN24+WBN ~ ¥ NI
\ J

discard lower-order terms L iacHf e TH% 2 oot o
(e.g., N = 1000: 16667 million w<. 166.17 million)

Technical definition. fiN) ~g(N) means H]im f:{:l’: = |
—= I |?'I' I

14

Simplification 2: tilde notation

= Estimate running time (or memory) as a function of input size .
- lgnore lower order terms.

— when N is large, terms are negligible
— when N is small, we don’t care

variable declaration N+2 -~ N
assignment statement N+2 - N
less than compare BN+ 1N +2) T VL
equal to compare e NiNV-1) ~ 1o 2
array access NiIN=-1) - N2

inCrement BNIN-DteNIN=-1I ~lBN o N2

More widely accepted notation:

Assume that T, f and g are functions mapping the
natural numbers {0, 1, 2, 3, ...} into the reals.

Definition: "Big Oh™ A function T(n) is in O(f(n))
if there exist constants ny > 0, and ¢ > 0, such
that for all n 2 ny, T(n) < ¢ * f(n).

Definition: "Omega” A function T(n) is in {2(f(n))
if there exist constants ny > 0, and ¢ > 0, such
that for all n 2 ngy, T(n) > ¢ * f(n).

Definition: "Theta” The set 6(g(n)) of functions
consists of €2(g(n)) » O(g(n)). 16

Example: 2-Sum

0. Approximately how many array accesses as a function of input size N7

int count = 0;
for (int 1 =0; 1 < N; 1++)
for (int § = i+1; § < N: j+2)
if (a[i] + a[j] = @ + “nner loop®
count++;

O+1+24...+(N=1) = %.’n’tﬁr‘-l]
N
p;

A. ~ NIarray accesses.

What is this using 6 notation?

Bottom line. Use cost model and tilde notation to simplify counts.
17

Example: 3-Sum

Q. Approximately how many array accesses as a function of input size N7

int count = 0;
for (int 1 = 0; 1 < N; i++)
for (int j = 1+41; § = N; j++)
for (int k = §J+1; k =< N; k++)
if (a[1] + a[j] + a[k] == 0) = "inmer loop”
count++?

{::r) _ ;n.r:_n.r—:lt]!.{_n.r—:]

A. ~ ¥ N3 array accesses. L L
fs

What is this using 8 notation?

Bottom line. Use cost model and tilde notation to simplify counts.
18

Common order-of-growth classifications

Definition. If f(N) ~ ¢ g(N) for some constant ¢ >0, then the order of growth

of (M) is g(N).
= |gnores leading coefficient.
= |gnores lower-order terms.

Ex. The order of growth of the running time of this code is N2,

int count = 0;
for (int 1 = 0; 1 < N; i++)
for (int j = i+1; § < N; j++)
for (int k = §+1; k < N; k++)
if (a[i] + a[j] + a[k] == 0)
Count++;

Typical usage. With running times.

h‘-""\ where keading coefficient

depends on machime, compiler, W .

19

42

Common order-of-growth classifications

Cood news. The set of functions
I, logN, N, NlogN, N2, N% and 2V
suffices to describe the order of growth of most common algorithms.

log-log plot
SI12T =

expone ntial

64T -~

Tune
A

87 -
47

27 ~

loganithmic

constanr

I 1} L] L) L L] 1 1] .

IK 2X 4K 8K pve 512

Typical orders of growth

20

43

Common order-of-growth classifications

order of

growth

Comstant

logarithmic

limear

linearithrmic

guadratic

cubic

exponential

a4 =b + ¢

while (N = 1)
i N=N/20 ... }

Far (int 7 = 0; 9 <« M; T+
f :sas 1

[$ee mergesort lecture]

Far (int 7 = 0; 9 <« M; f++)
for (int j = 0; § <« N; je+d
I .- 1

Far (int 7 = 0; 7 <« N; T#+)
for (int j = 0; § « H; je=r)
for (int E = 0; k « H: EK#+)
.. 1

[Lpe combinatorial fearch lectbwre]

siatement

divide in half

loop

diwide
and conquer

dauble loop

triple loop

exhausive
search

add twa
nurmbsers

binary s=arch

find the

mengpesort

check all
pairs

check all
triples

check all
bty

~ |

TN

21

State a recurrence relation T(n) for the
Big Oh time complexity of the monday
method on the next slide.

If n= 2k what is the value of x after the
call:

int x= monday(O, n, n);

public static int monday(int level, int n, int original_n)
{ inti,]j, sum, silly_sum;

if (n==1) return(original_n);
silly _sum=0;
for (i=0; i < n; i++)

for (j= i+1; j< n; j++)

silly _sum++;

sum= monday(level+1, n/2, original_n);
sum+= monday(level+1, n/2, original_n);
sum+= monday(level+1, n/2, original_n);

for (i=0; i < n; i++) silly_sum++;

return(sum);

Binary search: Java implementation

Trivial to implement?
« First binary search published in 1946.

« First bug-free one in 1962.
« Bug in Java's Arrays.binarySearch() discovered in 2006.

public static int binarySearch(int[] a, int key)

{
int o = 0, hi = a.length=-1;
while {(lo == hi)

{
int mid = 1o + (h1 = la) / 2;
if (key < a[mid]) h1 = mid = 1;
else 1f (key = a[mid]) lo = mid + 1; ————— ane "3-way compare”
else return mid:
}
return =1;

Invariant. If key appears in the array a[], then a[le] = key = a[hi].
24

Recursive code:
public static 1nt binary_search(
int level, 1nt key,
int [] A, 1int lo, int hi)
1int mid, pos;
// Entry 1s not 1n the array.

1f (lo > hi1) return(-1);

mid= lo + (hi- 1o)/2;

1T (key < A[mid])

{
pos= binary_search(level+1l, key,
A, lo, mid-1);
return(pos);
}
else 1t (key > A[mid])
{
pos= binary_search(level+1l, key,
A, mid+l, hi);
return(pos);
}

else return(mid);

For this example: A.length= 10
The initial call for a key 1s:

1nt pos= binary_search(0, key,
A, 0, A.length-1);

Search for 14:

mid= lo + (hi- 1o)/2;

A[0O ... 9] md =14
0 2 6 |/ |8 |9
2 6 14 |16 |18 |20
A[5 . 9] md =7
0 2 4 |5 |6 3 |9
2 6 10 |12 (14 18 |20

28

Search for 14:
mid= lo + Chi1- lo)/2;
A[5 ... 6] mid = 5

6

A[6 ... 6] mid =6

returns 6

Search for 15:

mid= lo + (hi- 1o)/2;

A[0O ... 9] md =14
0 2 6 |/ |8 |9
2 6 14 |16 |18 |20
A[5 . 9] md =7
0 2 4 |5 |6 3 |9
2 6 10 |12 (14 18 |20

30

Search for 15:
mid= lo + Chi1- lo)/2;
A[5 ... 6] mid = 5

O

A[6 ... 6] mid = 6

A[7 ... 6] Empty subproblem: lo > hi
returns -1

On which problem sizes are the left and
right subproblems equal in length at
every step?

Give a recurrence relation for the time
complexity of binary search and solve it.

How much time does binary search take:

1. In the best case?

2. In the worst case for a successful
search?

3. On average for a successful search?

4. On average for an unsuccessful
search?

Types of analyses

Best case. Lower bound on cost.

« Determined by "easiest” input.
= Provides a goal for all inputs.

Worst case. Upper bound on cost.
= Determined by "most difficult” input.
» Provides a guarantee for all inputs.

Average case. Expected cost for random input.

« Need a model for “random” input.
« Provides a way to predict performance.

Ex 1. Array accesses for brute-force 3-Sum.
Best: ~ by NE

Average: ~% N3
Worst: ~ 1y i3

'I;- thit courde

Ex 2. Compares for binary search.
Best: -~
Average: -~ g

Woarst: ~ lg N
33

Theory of algorithms

Goals.

« Establish "difficulty” of a problem.
« Develop "optimal” algorithms.

Approach.
» Suppress details in analysis: analyze “to within a constant factor.”
» Eliminate variability in input model: focus on the worst case.

Upper bound. Performance guarantee of algorithm for any input.
Lower bound. Proof that no algorithm can do better.

Optimal algorithm. Lower bound = upper bound (to within a constant factor).

34
L

Commonly-used notations in the theory of algorithms

10 N* provide
Tilde leading term ~ 10 N2 I0N24+22Nlog N approximate

ON2+2N+37 madel

Common mistake. Interpreting big-Oh as an approximate model.

Text: Focus on approximate models: use Tilde-notation
CSC 225 Uses Big Theta, Big Oh and Big Omega notation.

54

