Minimum weight spanning tree:
Put a non-negative weight on each edge.

Weight of a tree: sum of weights of its
edges.

Problem: find a spanning tree of graph G
with minimum weight.

Kruskal's algorithm: sort edges by weight.

Then for each edge: add it to the tree if
its endpoints are in different components.

1

One application:

A cable company must install cable to a new
neighbourhood. The cables are constrained
to be buried along certain paths. The cost
varies for different paths. A minimum
weight spanning tree gives the cheapest
way to connect everyone to cable.

Water distribution network

‘ EXPLANATION
& Navcd Wel SAG Paich Fam NPL St
& Sorge Tak V7 Gl Gngy N Sie
/N Magefose [DoverTowsde
Hysogucty Waze Body
Pipeine damelar, in nchas
N % N e
! N u N 4
/ 0 2
&

ADENCY PO® TOLL MSEVNOTY
AN OMCEASY MEDGYIYY

b Wels 22 38 Dover Township Area, New Jorsoy
= » | - — — —cewmt..____EH Water-Distribution System Model
FLATE 8. DISTRIBUTION OF PIPELINE DIAMETERS USED TO MODEL THE 1998 TER-DISTRIBUTION SYTEM
SERVING THE DOVER TOWNSHIP AREA, NEW JERSEY &—n.u::aum TO00 Anarywn o Dwn TR et it)

By Meorris L, Maslia, Juson B. Sautoer, and Mustafs M. Aral | Semurces aad (hasse Ragery. s X008

"

& LrvF

Ipoiteisl

o Che

MST Applications -

Abcahy e Oedipiliconnaas
Fum

Flasgetin 1 &QF

GaoT ks Unereoam 2

e Gene mutations

i

Hpo
fa tandryg protmn Lip-Vd »

 MST of a complete e
graph

. s -,.\.w Flagain.2

. - Suue bimdng grewin
Arancted a3 ADC rareporter Y o Sk

ok
o, "
BedA Fva

ﬂh‘,‘.') Pat=

PhnB
catl

Hul
R Maih

Gaah, o O"-' =t SyP

Har FrpZ
Tl o Hamik

Pralnn NSG Taneqoos

UiES "Fs EnoylinA_hydrlase

Hroa .‘-Ipl':-o PreA

| . : ! LN 4]
Padn 2 Unerazan

Dzps
Srnaan 1

Poplcbian prucirsce

Irng

W
ik

1mize

1n

M

e

3

e

&
ey
—

" Az

2| 1 B
EM

a5
- s

__HH

) EH £

EAEE)

|

.m“ﬂ

m_un

o %O . O
59@ 4 1@6 15
@ 12 @ 3 @

Edge weights:
1,3,4,5,6,8,9,11,12, 14, 15, 21

21

® 811 ® 14 ®
5 5 @ 4 . (7 ’ 15
@ 12 0 3 @

Edge weights:
1,3,4,5,6,8,9,11,12, 14, 15, 21

21

8
@ 11 @ 14
5@ 4 1 D

Edge weights:
1,3,4,5,6,8,9,11,12, 14,15, 21

Edge weights:
1,3,4,5,6,8,9,11,12, 14,15, 21

Edge weights:
1,3,4,5,6,8,9,11,12, 14,15, 21

Edge weights:
1,3,4,5,6,8,9,11,12,14, 15, 21

Edge weights:
1,3,4,5,6,8,9,11,12,14, 15, 21

Edge weights:
1,3,4,5,6,8,9,11,12, 14, 15, 21

Edge weights:
1,3,4,5,6,8,9,11,12, 14, 15, 21

Edge weights:
1,3,4,5,6,8,9,11,12, 14,15, 21

Edge weights:
1,3,4,5,6,8,9,11,12, 14, 15, 21

Edge weights:
1,3,4,5,6,8,9,11,12, 14, 15, 21

How can we determine quickly at each step
whether adding a new edge creates a cycle?

Or equivalently, given an edge (u,v) are u and
v in the same component?

19

The UNION/FIND data structure is a
dynamic data structure for graphs used to
keep track of the connected components.

It has 2 routines:

FIND(u): returns the name of the
component containing vertex u

UNION(u, v): unions together the
components containing u and v
(corresponding to an addition of edge (u,v)
to the graph).

20

