
1

1. Upper triangular

adjacency matrix
format.

2. Adjacency list
format (give a
rotation system
that represents
the planar
embedding).

Show what you would type into the computer
for the graph pictured using:

2

For a review of Big Oh notation:
There is a link to my latest CSC 225 class notes from
our “Selected class notes”. The introduction is in
Lectures 7 and 8 but algorithm space and time
analysis continued throughout the class. CSC 225 or
its equivalent is a prerequisite for CSC 422/522.

Assignment #1 has been posted (see web pages or
connex): due beginning of class, Tues. Sept. 23.

NSERC scholarship applications
http://www.nserc.ca (look for student info)

Master’s study: $17,500, due 4:30 pm Dec. 1.
Ph.D. Study: ($21,000-$25,000) due 4:30pm Oct. 1.

NSERC Grantcrafting Workshops:
Taught by Bradley Buckham.

Doctoral: Wed. Sept. 10, 1-3pm, Mac D110.

Master’s:Tues. Oct. 7, 1-3pm, Mac D010.

Dr. Buckham can give you feedback on your grant
applications. 3

http://www.nserc.ca/

4

Breadth-first search: method for traversing all
the vertices/edges of a graph.

I’ve programmed this more than any other graph
algorithm!

Some uses: graph traversal, finding connected
components, identifying cut vertices, finding
cycles, isomorphism testing for 3-connected planar
graphs, finding bridges for a planarity testing
algorithm, finding a maximum flow in a network,
reordering vertices so algorithms for hard
problems (clique, independent set, dominating set)
perform better…

5

Queue (used for BFS)

http://www.ac-nancy-metz.fr/enseign/anglais/Henry/bus-queue.jpg

http://devcentral.f5.com/weblogs/images/devcentral_f5_com/weblogs/Joe/WindowsLiveWriter/P
owerShellABCsQisforQueues_919A/queue_2.jpg

6

Queue data structure:

Items are:

Added to the rear of the queue.

Removed from the front of the queue.

http://cs.wellesley.edu/~cs230/assignments/lab12/queue.jpg

7

If you have an upper bound on the lifetime size
of the queue then you can use an array:
qfront=5, qrear=9

(qrear is next empty spot in array)

8

To test if there is something in the queue:

if (qfront < qrear)

To add x to the queue:

Q[qrear]= x; qrear++;

To delete front element of the queue:

x= Q[qfront]; qfront++;

Q:

qfront=5, qrear=9

9

If the neighbours of each vertex are
ordered according to their vertex
numbers, in what order does a BFS
starting at 0 visit the vertices?

10

BFS starting at a vertex s using an array for
the queue:

Data structures:
A queue Q[0..(n-1)] of vertices, qfront, qrear.

parent[i]= BFS tree parent of node i.
The parent of the root s is s.
To initialize:
// Set parent of each node to be -1 to indicate
// that the vertex has not yet been visited.
for (i=0; i < n; i++) parent[i]= -1;

// Initialize the queue so that BFS starts at s
qfront=0; qrear=1; Q[qfront]= s;
parent[s]=s;

11

while (qfront < qrear) // Q is not empty

 u= Q[qfront]; qfront++;

 for each neighbour v of u

 if (parent[v] == -1) // not visited

 parent[v]= u;

 Q[qrear]= v; qrear++;

 end if

 end for

end while

12

13

Red arcs represent parent information:

14

The blue spanning tree is the BFS tree.

15

Adjacency matrix:

16

Adjacency list:

17

BFI[v]= Breadth first index of v

 = step at which v is visited.

The BFI[v] is equal to v’s position in the
queue.

18

To initialize:
// Set parent of each node to be -1 to indicate
// that the vertex has not yet been visited.
for (i=0; i < n; i++) parent[i]= -1;

// Initialize the queue so that BFS starts at s
qfront=0; qrear=1; Q[qfront]= s;
parent[s]=s;

BFI[s]= 0;

19

while (qfront < qrear) // Q is not empty

 u= Q[qfront]; qfront++;

 for each neighbour v of u

 if (parent[v] == -1) // not visited

 parent[v]= u; BFI[v]= qrear;

 Q[qrear]= v; qrear++;

 end if

 end for

end while

20

One application:

How many connected components does a
graph have and which vertices are in each
component?

21

To find the connected components:

for (i=0; i < n; i++)

 parent[i]= -1;

nComp= 0;

for (i=0; i < n; i++)

 if (parent[i] == -1)

 nComp++;

 BFS(i, parent, component, nComp);

22

BFS(s, parent, component, nComp)

// Do not initialize parent.

// Initialize the queue so that BFS starts at s

qfront=0; qrear=1; Q[qfront]= s;

parent[s]=s;

component[s]= nComp;

23

while (qfront < qrear) // Q is not empty

 u= Q[qfront]; qfront++;

 for each neighbour v of u

 if (parent[v] == -1) // not visited

 parent[v]= u; component[v]= nComp;

 Q[qrear]= v; qrear++;

 end if

 end for

end while

24

How much time does BFS take to
indentify the connected components of a
graph when the data structure used for a
graph is an adjacency matrix?

25

Adjacency matrix:

26

How much time does BFS take to
indentify the connected components of a
graph when the data structure used for a
graph is an adjacency list?

27

Adjacency list:

28

How could you modify BFS to
determine if v is a cut vertex?

.

29

A bridge with respect to a subgraph H
of a graph G is either:
1. An edge e=(u, v) which is not in H

but both u and v are in H.
2. A connected component C of G-H

plus any edges that are incident to
one vertex in C and one vertex in H
plus the endpoints of these edges.

How can you find the bridges with
respect to a cut vertex v?

