
Which graphs are isomorphic to graph B?

Petersen

 Graph
? ? ?

1

2

Announcements:
Assignment #1: due at the beginning of
class on Tues. Sept. 23. Any questions?

If you send me e-mails please use:
CSC422: meaningful subject
or
CSC 522: meaningful subject

No office hour Tues. Sept. 16 at 1:30pm
(dept. meeting).

Graph Isomorphism

The graph isomorphism problem has no
known polynomial time algorithm which
works for an arbitrary graph.

Canonical form: If two graphs are
isomorphic, their canonical forms must be
the same, otherwise, they must be
different.

For trees and planar graphs, a canonical
form can be computed in polynomial time.

3

4

5

6

7

Planar graphs: Isomorphic graphs can have
planar embeddings that are not isomorphic.

8

Two graphs that are isomorphic but their
embeddings are not:

Isomorphism testing and finding
automorphisms of embeddings.

Input: rotation system.

0: 1 5
1: 0 2 6
2: 1 3 7
3: 2 4 8
4: 3 9
5: 0 6
6: 1 7 5
7: 2 8 6
8: 3 9 7
9: 4 8

For each choice of a root vertex r, and a first
child f that is a neighbour of r and for a
direction d (clockwise or counterclockwise)

• Perform clockwise_BFS(r, f, d) and label

vertices using the BFI’s that result.

• Keep the smallest one (compare the
rotation systems lexicographically).

This smallest rotation system G is the
canonical form.

r

f

0 1 2 3 4 5 6 7 8 9

Queue 4 9 3

Parent 4 4 4

BFI 2 0 1

Neighbours of r=4 in cw order starting with f=9:
4: 3 9 4: 9 3 4 [0]: 9[1] 3[2]

[0]: [1][2]

r

f

0 1 2 3 4 5 6 7 8 9

Queue 4 9 3 8

Parent 4 4 9 4

BFI 2 0 3 1

Neighbours of 9 in cw order starting with 4:
9: 4 8 9: 4 8 9[1]: 4[0] 8[3]

[0]: [1][2]
[1]: [0][3]

r

f

0 1 2 3 4 5 6 7 8 9

Queue 4 9 3 8 2

Parent 3 4 4 9 4

BFI 4 2 0 3 1

Neighbours of 3 in cw order starting with 4:
3: 2 4 8 3: 4 8 2 3[2]: 4[0]8[3]2[4]

[0]: [1][2]
[1]: [0][3]
[2]: [0][3][4]

r

f

0 1 2 3 4 5 6 7 8 9

Queue 4 9 3 8 2 7

Parent 3 4 4 9 9 4

BFI 4 2 0 5 3 1

Neighbours of 8 in cw order starting with 9:
8: 3 9 7 8: 9 7 3 8[3]: 9[0]7[5]3[2]

[0]: [1][2]
[1]: [0][3]
[2]: [0][3][4]
[3]: [0][5][2]

Renumber rotation system so it is the
lexicographic minimum (canonical form):

Two rotation systems are isomorphic to
each other if and only if they have the
same canonical form. A 3-connected planar
graph has a unique embedding (if an
embedding and its “flip” are the same) so
this solves isomorphism for these graphs.

To get all automorphisms of the canonically
labelled graph:
For each choice of a root vertex r, and a first
child f that is a neighbour of r and for a
direction d (clockwise or counterclockwise)

• Perform clockwise_BFS(r, f, d) and label

vertices using the BFI’s that result.
• The BFI permutation is an automorphism if

the resulting rotation system is identical to
the canonical one.

You don’t need to write code for both
clockwise and counterclockwise BFS if you
apply the following trick:

For direction counterclockwise, first flip
the rotation system (reverse the cyclic
order of the neighbours of each vertex).

Then use your clockwise BFS routine on
this flipped embedding.

0: 1 2
1: 0 3
2: 0 3 4
3: 1 5 2
4: 2 5 6
5: 3 7 4
6: 4 7 8
7: 5 9 6
8: 6 9
9: 7 8

flipped embedding
0: 1 2
1: 0 3
2: 0 4 3
3: 1 2 5
4: 2 6 5
5: 3 4 7
6: 4 8 7
7: 5 6 9
8: 6 9
9: 7 8

A generic flip: Note that we standardize the
rotation systems by listing the smallest
numbered neighbour first.
So when we flip:
x: a b c d e f we get x: a f e d c b

IMPORTANT: to do ccw directly on a worksheet,
when making new rotation system, you must traverse
neighbours of each vertex in ccw order to write it
down (starting with smallest neighbour).

Top one read
ccw is same as
flipped one
read cw.

How much time does this take for a planar
graph?

Planar graphs have at most 3n-6 edges.

Number of cw BFS’s required in worst
case: for each edge (u, v):
u= r, v= f, d= cw
u= r, v= f, d= ccw
v=r, u=f, d=cw
v=r, u=f, d= ccw
So 4[3n-6] which is in O(n). Each takes
O(n) time for a total of O(n2).

