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Announcements: 
Assignment #1: due at the beginning of 
class on Tues. Sept. 23. Any questions? 
 
If you send me e-mails please use: 
CSC422: meaningful subject 
or 
CSC 522: meaningful subject 
 
No office hour Tues. Sept. 16 at 1:30pm 
(dept. meeting). 



Graph Isomorphism 

The graph isomorphism problem has no 
known polynomial time algorithm which 
works for an arbitrary graph. 

Canonical form: If two graphs are 
isomorphic, their canonical forms must be 
the same, otherwise, they must be 
different. 

For trees and planar graphs, a canonical 
form can be computed in polynomial time. 
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Planar graphs: Isomorphic graphs can have 
planar embeddings that are not isomorphic. 
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Two graphs that are isomorphic but their 
embeddings are not: 
 



Isomorphism testing and finding 
automorphisms of embeddings. 
 
Input: rotation system. 

0: 1 5 
1: 0 2 6 
2: 1 3 7 
3: 2 4 8 
4: 3 9 
5: 0 6 
6: 1 7 5 
7: 2 8 6 
8: 3 9 7 
9: 4 8 



For each choice of a root vertex r, and a first 
child f that is a neighbour of r and for a 
direction d (clockwise or counterclockwise) 
 
• Perform clockwise_BFS(r, f, d) and label 

vertices using the BFI’s that result. 
 

• Keep the smallest one (compare the 
rotation systems lexicographically). 
 

This smallest rotation system G  is the 
canonical form. 



r 

f 

0 1 2 3 4 5 6 7 8 9 

Queue 4 9 3 

Parent 4 4 4 

BFI 2 0 1 

Neighbours of r=4 in cw order starting with f=9: 
4:  3 9                4:   9   3             4 [0]: 9[1] 3[2] 

[0]: [1][2] 



r 

f 

0 1 2 3 4 5 6 7 8 9 

Queue 4 9 3 8 

Parent 4 4 9 4 

BFI 2 0 3 1 

Neighbours of 9 in cw order starting with 4: 
9:  4  8                9:  4  8             9[1]: 4[0] 8[3] 

[0]: [1][2] 
[1]:  [0][3] 



r 

f 

0 1 2 3 4 5 6 7 8 9 

Queue 4 9 3 8 2 

Parent 3 4 4 9 4 

BFI 4 2 0 3 1 

Neighbours of 3 in cw order starting with 4: 
3:  2 4 8           3: 4 8 2          3[2]: 4[0]8[3]2[4] 

[0]: [1][2] 
[1]:  [0][3] 
[2]:  [0][3][4] 



r 

f 

0 1 2 3 4 5 6 7 8 9 

Queue 4 9 3 8 2 7 

Parent 3 4 4 9 9 4 

BFI 4 2 0 5 3 1 

Neighbours of 8 in cw order starting with 9: 
8: 3 9 7           8: 9 7 3          8[3]: 9[0]7[5]3[2] 

[0]: [1][2] 
[1]:  [0][3] 
[2]:  [0][3][4] 
[3]:  [0][5][2] 



Renumber rotation system so it is the 
lexicographic minimum (canonical form): 
 
 

Two rotation systems are isomorphic to 
each other if and only if they have the 
same canonical form. A 3-connected planar 
graph has a unique embedding (if an 
embedding and its “flip” are the same) so 
this solves isomorphism for these graphs. 
 
 



To get all automorphisms of the canonically 
labelled graph: 
For each choice of a root vertex r, and a first 
child f that is a neighbour of r and for a 
direction d (clockwise or counterclockwise) 
 
• Perform clockwise_BFS(r, f, d) and label 

vertices using the BFI’s that result. 
• The BFI permutation is an automorphism if 

the resulting rotation system is identical to 
the canonical one. 



You don’t need to write code for both 
clockwise and counterclockwise BFS if you 
apply the following trick: 
 
For direction counterclockwise, first flip 
the rotation system (reverse the cyclic 
order of the neighbours of each vertex). 
 
Then use your clockwise BFS routine on 
this flipped embedding. 



0: 1 2 
1: 0 3 
2: 0 3 4 
3: 1 5 2 
4: 2 5 6  
5: 3 7 4 
6: 4 7 8 
7: 5 9 6 
8: 6 9 
9: 7 8 

flipped embedding 
0: 1 2 
1: 0 3 
2: 0 4 3 
3: 1 2 5 
4: 2 6 5  
5: 3 4 7 
6: 4 8 7 
7: 5 6 9 
8: 6 9 
9: 7 8 



A generic flip: Note that we standardize the 
rotation systems by listing the smallest 
numbered neighbour first. 
So when we flip: 
x:  a b c d e f  we get     x: a f e d c b  



IMPORTANT: to do ccw directly on a worksheet, 
when making new rotation system, you must traverse 
neighbours of each vertex in ccw order to write it 
down (starting with smallest neighbour). 

Top one read 
ccw is same as 
flipped one 
read cw. 



How much time does this take for a planar 
graph? 
 
Planar graphs have at most 3n-6 edges. 
 
Number of cw BFS’s required in worst 
case: for each edge (u, v): 
u= r, v= f, d= cw 
u= r, v= f, d= ccw 
v=r, u=f, d=cw 
v=r, u=f, d= ccw 
So 4[3n-6] which is in O(n). Each takes 
O(n) time for a total of O(n2). 


