- 1. Walk the faces of this rotation system.
- Is it on the plane or torus? Hint: on the plane, f= m-n+2, and on the torus,

f= m-n.

- 3. Draw a picture of the embedding.
- 4. Is the embedding chiral or not?

0:153 1:0622:173 3:042 4:375 5:046 6:157 7:264

Now available:

Project literature review specifications. Due date: Fri. Oct. 24 at 11:55pm. Late deadline: Fri. Oct. 31 by 11:55pm with a 10% late penalty. Choose your topic and start work early!

Assignment #2: due Friday Oct. 3.

How can we find a planar embedding of each 2connected component of a graph? One simple solution: Algorithm by Demoucron, Malgrange and Pertuiset.

```
@ARTICLE{genus:DMP,
AUTHOR = {G. Demoucron and Y. Malgrange
             and R. Pertuiset},
TITLE = {Graphes Planaires},
JOURNAL = {Rev. Fran\c{c}aise Recherche
             Op \ \{e\} rationnelle},
YEAR = {1964},
VOLUME = \{8\},
PAGES = {33--47} }
```

A bridge with respect to a subgraph H of a graph G is either:

- An edge e=(u, v) which is not in H but both u and v are in H.
- 2. A connected component C of G-H plus any edges that are incident to one vertex in C and one vertex in H plus the endpoints of these edges.

How can you find the bridges with respect to a cut vertex v?

A bridge can be drawn in a face if all its points of attachment lie on that face.

1. Find a bridge which can be drawn in a minimum number of faces (the blue bridge).

2. Find a path between two points of attachment for that bridge and add the path to the embedding.

No backtracking required for planarity testing!

Gibbons: if G is 2-vertex connected, every bridge of G has at least two points of contact and can therefore be drawn in just two faces.

Graphs homeomorphic to K_5 and $K_{3,3}$:

Rashid Bin Muhammad

Kuratowski's theorem: If G is not planar then it contains a subgraph homeomorphic to K_5 or $K_{3,3}$.

Topological obstruction for surface S: degrees ≥3,does not embed on S, G-e embeds on S for all e. Minor Order Obstruction: Topological obstruction and G·e embeds on S for all e.

Wagner's theorem: G is planar if and only if it has neither K_5 nor $K_{3,3}$ as a minor.

The PetersenGraph.

Complete Graph on 5 Vertices.

Dale Winter

Torus Embedding

Embedding:

Linear time: Juvan, Marincek & Mohar, '94

O(n³): Juvan & Mohar, preprint, implementation is buggy

Faces can have repeated vertices and this makes embedding hard:

7

Indifference Theorem (plane): If B1 and B2 conflict in one face they conflict in all faces. Does not hold for the torus:

Implemented algorithms run in exponential time: Myrvold & Neufeld, '96 Woodcock & Myrvold: Jen's thesis '06 For each embedding of K (K_5 or $K_{3,3}$) do Embed bridges as per Demoucron except: Choose a minimum penalty bridge at each step (bridge with path with min # embedding options). Embed the path in all possible ways.

Gagarin & Kocay '02 + Asano '85: could be used to make the case without a $K_{3,3}$ polynomial time.

Algorithms proved faulty [Kocay & Myrvold]:

I. S. Filotti. An efficient algorithm for determining whether a cubic graph is toroidal. STOC, 1978, pp. 133-142.

I. S. Filotti. An Algorithm for Embedding Cubic Graphs in the Torus. JCSS, volume 2, 1980, pp. 255-276.

I. S. Filotti, G. L. Miller and J. Reif. On determining the genus of a graph in $O(v^{O(g)})$ steps. STOC 1979, pp. 27-37.

I.S. Filotti and Jack Mayer. A polynomial algorithm for determining the isomorphism of graphs of fixed genus. STOC 1980, pp. 236-243.

Gary Miller. Isomorphism Testing for Graphs of Bounded Genus. STOC 1980, pp. 225-235. We shall say that internal chains e and e^{-1} are separated if no two corresponding points on e and e^{-1} are on the same face of g. It is easily seen that e and e^{-1} can be separated in one of three ways:

(i) one chain C from x to y where x is a point of bfc and y is a point of $df^{-1}a$.

(ii) two chains C1 from x1 to y1 and C2 from x2 to y2 where x1 is a point of bfc, y1 is a point of e, x2 is a point of df⁻¹a, and y2 is a point of e^{-1} .

(iii) two chains C1 from x1 to y1 and C2 from x2 to y2 where x1 is a point of df⁻¹a, y1 is a point of e, x2 is a point of bfc, and y2 is a point of e^{-1} .

All 6 chains are needed to separate e from e^{-1} :

e= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

If chains can intersect boundary:

e= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

But then we should "embed them in the unique way". e^{-1}

e= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Obstructions for Surfaces

Fact: for any orientable or non-orientable surface, the set of obstructions is finite.

Consequence of Robertson & Seymour theory but also proved independently:

Orientable surfaces: Bodendiek & Wagner, '89

Non-orientable: Archdeacon & Huneke, '89.

How many torus obstructions are there?

8:	3	1 <i>1</i> ·	1838
9:	43		1050
10 .	457	15 :	291
10 .	2020	16 :	54
11:	2839	17:	8
12 :	6426	10 .	1
13 :	5394	10 ·	1

Minor Order Torus Obstructions: 1754

n/m:		18	19	20	21	22	23	24	25	26	27	28	29	30
8	•	0	0	0	0	1	0	1	1	0	0	0	0	0
9	•	0	2	5	2	9	13	6	2	4	0	0	0	0
10	•	0	15	3	18	31	117	90	92	72	17	1	0	1
11	•	5	2	0	46	131	569	998	745	287	44	8	3	1
12	•	1	0	0	52	238	1218	2517	1827	472	79	21	1	0
13	•	0	0	0	5	98	836	1985	1907	455	65	43	0	0
14	•	0	0	0	0	9	68	463	942	222	41	92	1	0
15	•	0	0	0	0	0	0	21	118	43	13	91	5	0
16	•	0	0	0	0	0	0	0	4	3	5	41	0	1
17	•	0	0	0	0	0	0	0	0	0	0	8	0	0
18	•	0	0	0	0	0	0	0	0	0	0	1	0	0

All Torus Obstructions Found So Far:

n/n	n :	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
8	:					1		1	1											
9	:		2	5	2	9	17	6	2	5										
10	:		15	9	35	40	190	170	102	76	21	1		1						
11	:	5	2	49	87	270	892	1878	1092	501	124	22	4	1						
12	:	1	12	6	201	808	2698	6688	6372	1933	482	94	6	2						
13	:			12	19	820	4967	12781	16704	7182	1476	266	52	1						
14	:				9	38	2476	15219	24352	16298	3858	808	215	19						
15	:						33	3646	22402	20954	8378	1859	708	184	5					
16	:							20	2689	17469	10578	3077	1282	694	66	1				
17	:									837	8099	4152	1090	1059	368	11				
18	:										133	2332	1471	511	639	102	1			
19	:												393	435	292	255	15			
20	:													39	100	164	63	2		
21	:															12	63	1		
22	:																2	22		
23	:																		4	
24	:																			2