
1. Walk the faces of this 
rotation system. 

2. Is it on the plane or torus? 
    Hint: on the plane,  
    f= m-n+2, and on the torus,  
    f= m-n. 
3. Draw a picture of the 
    embedding. 
4. Is the embedding chiral  
    or not? 

0: 1 5 3 

1: 0 6 2 

2: 1 7 3 

3: 0 4 2 

4: 3 7 5 

5: 0 4 6 

6: 1 5 7 

7: 2 6 4 

 



Now available: 
 
Project literature review specifications. 
Due date: Fri. Oct. 24 at 11:55pm.  
Late deadline: Fri. Oct. 31 by 11:55pm 
with a 10% late penalty.  
Choose your topic and start work early! 
 
Assignment #2: due Friday Oct. 3. 
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How can we find a planar embedding of each 2-
connected component of a graph? 
One simple solution: Algorithm by Demoucron, 
Malgrange and Pertuiset. 
 
@ARTICLE{genus:DMP, 
   AUTHOR = {G. Demoucron and Y. Malgrange 
                       and R. Pertuiset}, 
   TITLE = {Graphes Planaires}, 
   JOURNAL = {Rev. Fran\c{c}aise Recherche 
                        Op\'{e}rationnelle}, 
   YEAR = {1964}, 
   VOLUME = {8}, 
   PAGES = {33--47}   } 
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A bridge with respect to a subgraph H 
of a graph G is either: 
1. An edge e=(u, v) which is not in H 

but both u and v are in H. 
2. A connected component C of G-H 

plus any edges that are incident to 
one vertex in C and one vertex in H 
plus the endpoints of these edges. 
 

How can you find the bridges with 
respect to a cut vertex v? 



A bridge can be drawn in a face if all its points of 
attachment lie on that face. 



1. Find a bridge which can be drawn in a 
minimum number of faces (the blue bridge). 

Demoucron, 
Malgrange and 
Pertuiset ’64: 



2. Find a path between two points of attachment 
for that bridge and add the path to the 
embedding. 



No backtracking required for planarity testing! 



Gibbons: if G is 2-vertex connected, every 
bridge of G has at least two points of contact 
and can therefore be drawn in just two faces. 

Counterexample: 



Graphs homeomorphic to K5 and K3,3: 

Rashid Bin 

Muhammad 



Kuratowski’s theorem: If G is not planar then it 
contains a subgraph homeomorphic to K5 or K3,3. 

Topological obstruction for surface S: 

degrees ≥3,does not embed on S, 

G-e embeds on S for all e.  



Dale Winter 

Minor Order Obstruction: Topological 
obstruction and G۰e embeds on S for all e. 

Wagner's theorem: G is planar if and only if it 
has neither K5 nor K3,3 as a minor. 



Torus Embedding 

Embedding:  

Linear time: Juvan,  Marincek & Mohar, ’94 

O(n3): Juvan & Mohar, preprint, implementation is buggy 



Faces can have repeated vertices and this 
makes embedding hard: 



Indifference Theorem (plane): If B1 and B2 
conflict in one face they conflict in all faces. 

Does not hold for the torus: 



Implemented algorithms run in exponential time: 

Myrvold & Neufeld, ‘96 

Woodcock & Myrvold: Jen’s thesis ‘06 

For each embedding of K (K5 or K3,3) do 

  Embed bridges as per Demoucron except: 

  Choose a minimum penalty bridge at each step 

  (bridge with path with min # embedding options). 

  Embed the path in all possible ways. 

 

Gagarin & Kocay ‘02 + Asano ‘85: could be used to make the 
case without a K3,3 polynomial time. 



Algorithms proved faulty [Kocay & Myrvold]: 
I. S. Filotti. An efficient algorithm for determining whether a 
cubic graph is toroidal. STOC, 1978, pp. 133-142. 
 
I. S. Filotti. An Algorithm for Embedding Cubic Graphs in the 
Torus. JCSS, volume 2, 1980, pp. 255-276. 
 
I. S. Filotti, G. L. Miller and J. Reif. On determining the genus of a 
graph in O(vO(g))steps. STOC 1979, pp. 27-37. 
 
I.S. Filotti and Jack Mayer. A polynomial algorithm for determining 
the isomorphism of graphs of fixed genus. STOC 1980, pp. 236-
243. 
 
Gary Miller. Isomorphism Testing for Graphs of Bounded Genus. 
STOC 1980, pp. 225-235. 

 



We shall say that internal chains e and e-1 are separated if no two 
corresponding points on e and e-1 are on the same face of g. It is easily 
seen that e and e-1 can be separated in one of three ways: 
 (i) one chain C from x to y where x is a point of bfc and y is a point of 
df-1a. 
 (ii) two chains C1 from x1 to y1  and C2 from x2 to y2  where x1 is a 
point of bfc, y1 is a point of e, x2 is a point of df-1a, and y2 is a point of 
e-1. 
(iii) two chains C1 from x1 to y1  and C2 from x2 to y2  where x1 is a 
point of df-1a, y1 is a point of e, x2 is a point of bfc, and y2 is a point of 
e-1. 

 



All 6 chains are needed to separate e from e-1: 



If chains can intersect boundary: 

But then we should “embed them in the unique 
way”. 



Fact: for any orientable or non-orientable 
surface, the set of obstructions is finite. 

Consequence of Robertson & Seymour theory 
but also proved independently: 

Orientable surfaces: Bodendiek & Wagner, ’89 

Non-orientable:  Archdeacon & Huneke, ’89. 

How many torus obstructions are 
there? 

Obstructions for Surfaces 



n/m: 18 19 20 21  22   23   24   25  26 27 28 29 30           

 8 :  0  0  0  0   1    0    1    1   0  0  0  0  0  

 9 :  0  2  5  2   9   13    6    2   4  0  0  0  0  

10 :  0 15  3 18  31  117   90   92  72 17  1  0  1  

11 :  5  2  0 46 131  569  998  745 287 44  8  3  1  

12 :  1  0  0 52 238 1218 2517 1827 472 79 21  1  0  

13 :  0  0  0  5  98  836 1985 1907 455 65 43  0  0  

14 :  0  0  0  0   9   68  463  942 222 41 92  1  0  

15 :  0  0  0  0   0    0   21  118  43 13 91  5  0  

16 :  0  0  0  0   0    0    0    4   3  5 41  0  1  

17 :  0  0  0  0   0    0    0    0   0  0  8  0  0  

18 :  0  0  0  0   0    0    0    0   0  0  1  0  0  

 

  8 :         3 
   9 :       43 
 10 :      457      
 11 :    2839     
 12 :    6426     
 13 :    5394     

 

 14 :    1838     
 15 :      291      
 16 :       54       
 17 :         8  
 18 :         1        

 

Minor Order Torus 
Obstructions: 1754 



n/m: 18 19 20  21  22   23    24    25    26    27   28   29   30  31  32 33 34 35 36           

 8 :  0  0  0   0   1    0     1     1     0     0    0    0    0   0   0  0  0  0  0  

 9 :  0  2  5   2   9   17     6     2     5     0    0    0    0   0   0  0  0  0  0  

10 :  0 15  9  35  40  190   170   102    76    21    1    0    1   0   0  0  0  0  0  

11 :  5  2 49  87 270  892  1878  1092   501   124   22    4    1   0   0  0  0  0  0  

12 :  1 12  6 201 808 2698  6688  6372  1933   482   94    6    2   0   0  0  0  0  0  

13 :  0  0 12  19 820 4967 12781 16704  7182  1476  266   52    1   0   0  0  0  0  0  

14 :  0  0  0   9  38 2476 15219 24352 16298  3858  808  215   19   0   0  0  0  0  0  

15 :  0  0  0   0   0   33  3646 22402 20954  8378 1859  708  184   5   0  0  0  0  0  

16 :  0  0  0   0   0    0    20  2689 17469 10578 3077 1282  694  66   1  0  0  0  0  

17 :  0  0  0   0   0    0     0     0   837  8099 4152 1090 1059 368  11  0  0  0  0  

18 :  0  0  0   0   0    0     0     0     0   133 2332 1471  511 639 102  1  0  0  0  

19 :  0  0  0   0   0    0     0     0     0     0    0  393  435 292 255 15  0  0  0  

20 :  0  0  0   0   0    0     0     0     0     0    0    0   39 100 164 63  2  0  0  

21 :  0  0  0   0   0    0     0     0     0     0    0    0    0   0  12 63  1  0  0  

22 :  0  0  0   0   0    0     0     0     0     0    0    0    0   0   0  2 22  0  0  

23 :  0  0  0   0   0    0     0     0     0     0    0    0    0   0   0  0  0  4  0  

24 :  0  0  0   0   0    0     0     0     0     0    0    0    0   0   0  0  0  0  2  

 

All Torus Obstructions Found So Far: 


