. Walk the faces of this
rotation system.

. Is it on the plane or torus?
Hint: on the plane,

f= m-n+2, and on the torus,
f= m-n.

. Draw a picture of the
embedding.

. Is the embedding chiral

or not?
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Now available:

Project literature review specifications.
Due date: Fri. Oct. 24 at 11:55pm.

Late deadline: Fri. Oct. 31 by 11:55pm
with a 10% late penalty.

Choose your topic and start work early!

Assignment #2: due Friday Oct. 3.



How can we find a planar embedding of each 2-
connected component of a graph?

One simple solution: Algorithm by Demoucron,
Malgrange and Pertuiset.

@ARTICLE{genus:DMP,

AUTHOR = {G. Demoucron and Y. Malgrange
and R. Pertuiset},

TITLE = {Graphes Planaires},

JOURNAL = {Rev. Fran\c{c}aise Recherche
Op\'{e}rationnelle},

YEAR = {1964},

VOLUME = {8},

PAGES = {33--47} } 3



A bridge with respect to a subgraph H

of a graph G is either:

1. An edge e=(u, v) which is not in H
but both uand v are in H.

2. A connected component C of G-H
plus any edges that are incident to
one vertex in C and one vertex in H
plus the endpoints of these edges.

How can you find the bridges with
respect to a cut vertex v?



A bridge can be drawn in a face if all its points of
attachment lie on that face.



Demoucron,
Malgrange and
Pertuiset '64:

1. Find a bridge which can be drawn in a
minimum number of faces (the blue bridge).



2. Find a path between two points of attachment
for that bridge and add the path to the
embedding.



No backtracking required for planarity testing



Gibbons: if G is 2-vertex connected, every
bridge of G has at least two points of contact
and can therefore be drawn in just two faces.

Counterexample:




Graphs homeomorphic to K5 and Kj 3t

O

Rashid Bin
Muhammad



Kuratowski's theorem: If G is not planar then it

Topological obstruction for surface S:

degrees >3,does not embed on S,

G-e embeds on S for all e.



Minor Order Obstruction: Topological
obstruction and G:e embeds on S for all e.

Wagner's theorem: G is planar if and only if it
has neither Kg nor K; 5 as a minor.

—ontract the green
=z es to 1de niityy
the pink: arnd blue

vertices,

sl

The Petersen Graph. Complete Graph on 5 Vertices.
Dale Winter



Torus Embedding

Embedding:
Linear time: Juvan, Marincek & Mohar, '94

O(n3): Juvan & Mohar, preprint, implementation is buggy



Faces can have repeated vertices and this
makes embedding hard:




Indifference Theorem (plane): If Bl and B2
conflict in one face they conflict in all faces.

Does not hold for the torus:
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Implemented algorithms run in exponential time:
Myrvold & Neufeld, '96

Woodcock & Myrvold: Jen's thesis '06

For each embedding of K (K5 or K3 3) do
Embed bridges as per Demoucron except:
Choose a minimum penalty bridge at each step
(bridge with path with min # embedding options).
Embed the path in all possible ways.

Gagarin & Kocay ‘02 + Asano '85: could be used to make the
case without a K; 3 polynomial time.



Algorithms proved faulty [Kocay & Myrvold]:

I. S. Filotti. An efficient algorithm for determining whether a
cubic graph is toroidal. STOC, 1978, pp. 133-142.

I. S. Filotti. An Algorithm for Embedding Cubic Graphs in the
Torus. JCSS, volume 2, 1980, pp. 255-276.

I. S. Filotti, 6. L. Miller and J. Reif. On determining the genus of a
graph in O(vO@)steps. STOC 1979, pp. 27-37.

I.S. Filotti and Jack Mayer. A polynomial algorithm for determining
the isomorphism of graphs of fixed genus. STOC 1980, pp. 236-
243,

Gary Miller. Isomorphism Testing for Graphs of Bounded Genus.
STOC 1980, pp. 225-235.



We shall say that internal chains e and e are separated if no two
corresponding points on e and e’! are on the same face of g. It is easily
seen that e and e! can be separated in one of three ways:

(i) one chain C from x to y where x is a point of bfc and y is a point of
df-la.

(ii) two chains C1 from x1 to yl and C2 from x2 to y2 where xl is a
point of bfc, yl is a point of e, x2 is a point of df-a, and y2 is a point of
el
(iii) Two chains C1 from x1 o yl and C2 from x2 to y2 where x1 is a
point of df-la, yl is a point of e, X2 is a point of bfc, and y2 is a point of
el




f

All 6 chains are needed to separate e from el
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e=1,2,3,4,5,6,7,8,9, 10



If chains can intersect boundary:

e —1

1 2 3 + 5 6 7 2

o e B e W o O LR o o 0
)

Yo

e=1,2,3,4,5,6,7,8,9, 10
But then we should "embed them in the unique
way". e -1
; 1 O‘l l/,_\13 O—L l/,_\15 (_\6 7 (H\E /_\9 10

e=1,2,3,4,5,6,7,8,9,10



Obstructions for Surfaces

Fact: for any orientable or non-orientable
surface, the set of obstructions is finite.

Consequence of Robertson & Seymour theory
but also proved independently:

Orientable surfaces: Bodendiek & Wagner, ‘89

Non-orientable: Archdeacon & Huneke, '89.

How many torus obstructions are
there?



8 : 3

9 - 43 14: 1838 .

6. a5y 155 291 Minor Order Torus

11: 2839 16+ o4 Obstructions: 1754
. 17 : 8

12: 6426 8. 1

13: 5394 '

n/m: 18 19 20 21 22 23 24 25 26 27 28 29 30
8 : 1 1 1

9 : 2 5 2 9 13 6 2 4

10 : 15 3 18 31 117 90 92 72 17 1 0 1
11 : 5 2 46 131 569 998 745 287 44 8 3 1
12 : 1 52 238 1218 2517 1827 472 79 21 1

13 : 5 98 836 1985 1907 455 65 43

14 : 9 68 463 942 222 41 92 1

15 : 21 118 43 13 91 5

16 : 4 3 5 41 1
17 8

18 : 1



All Torus Obstructions Found So Far:

n/m: 18 19 20 21 22 23

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1
2 5 2 9 17
15 9 35 40 190
5 2 49 87 270 892
1 12 6 201 808 2698
12 19 820 4967
9 38 2476
33

24

1

6

170
1878
6688
12781
15219
3646
20

25

1

2

102
1092
6372
16704
24352
22402
2689

26

5

76
501
1933
7182
16298
20954
17469
837

27

21
124
482

1476
3858
8378
10578
8099
133

28

22
94
266
808
1859
3077
4152
2332

29

52
215
708
1282
1090
1471

393

30

H N R R

19
184
694

1059
511
435

39

31 32 33 34 35 36

66 1
368 11
639 102
292 255
100 164

12

15

63 2
63 1
2 22



