
Relabellings of Graphs and Rotation Systems

Isomorphisms

Automorphisms

Orbits

Canonical forms

One possible canonical form for a graph G:

For G: n vertices, data structure is an adjacency matrix.

Set lex_min_G = G.
For each of the n! permutations p of 0 to n-1 do
 Relabel the vertices of G using p to get H.
 If H < lex_min_G, set lex_min_G= H.

Important feature of a canonical form:
If two graphs are isomorphic they must have identical
canonical forms.

This one is not easy to compute but it satisfies the
requirements.

Immediate speed up idea:
Suppose we insist that the vertices are sorted
by degree in the canonical form.
Then we only have to test permutations that
admit this property.

 Any such graph
property that does not
change based on how
you choose to label the
vertices can be used.

We can be smarter than just looking at all
permutations. For example, if vertex 0 is as
labelled and we want a lex. min. adjacency matrix
with vertices sorted by degree, what must the
red vertex be labelled as?

One way to get all the automorphisms of
lex_min_G:

Find lex_min_G.

For each of the n! permutations p of 0 to n-1 do
 Relabel the vertices of G using p to get H.
 If H = lex_min_G, p is an automorphism
 of lex_min_G.

To get all the automorphisms of G:

Let q be a permutation such that when q is applied to G
it gives lex_min_G.

For each of the automorphisms p of lex_min_G,

 the corresponding automorphism of G is: q* p * q-1

One possible canonical form for a rotation system:
For G: n vertices, data structure is a rotation system.

Set lex_min_G = G.
For each of the n! permutations p of 0 to n-1 do
 Relabel the rotation system G using p to get
 a rotation system H.
 If H < lex_min_G, set lex_min_G= H.

Flip G to get rotation system flip_G.

For each of the n! permutations p of 0 to n-1 do
 Relabel the rotation system flip_G using p to get
 a rotation system H.
 If H < lex_min_G, set lex_min_G= H.

Two important features that make a rotation system
different from a graph:

1. The neighbours of each vertex are given in clockwise

order.

2. The ordering is considered to be cyclic.
 We avoid considering all rotations in graphs without
 multiple edges by using the ordering that puts the
 smallest numbered neighbour first (our standard
 form). This makes comparing them easier.

0: 1 7 4 = 0: 7 4 1 = 0: 4 1 7

What is the standard form relabelled
rotation system when the permutation
4 5 0 2 1 3
is applied to this rotation system?

 0: 5
 1: 2
 2: 1 4 5 3
 3: 2
 4: 2
 5: 0 2

Here we can make a massive
 speed up by being smarter.

Suppose we only consider relabelling
permutations than can arise by applying
clockwise-BFS to a graph or its flip.

Any other permutations that are
automorphisms of the lex. min. subject to this
condition would then also have to be a
labelling that arises by applying a clockwise-
BFS to the rotation system or its flip.

For a given choice of root r and first child f:
choosing the BFS parent of a vertex is
something that only depends on r and f,
and NOT how the initial graph was labelled.

I suspect some students chose the smallest
numbered vertex in the original labelling. This
is not a good graph invariant as it does
depend on how the graph was originally
labelled.

Summary of important points:

If G and H are graphs: G is isomorphic to H if at least one
of the n! relabellings p of the vertices of G gives the same
adjacency matrix as H has.

For each graph G there is n! ways to label its vertices.
If one of the distinct labellings has exactly r
automorphisms, then every distinct labelling as r
automorphisms.

d= number of distinct labellings
r= number of automorphisms of one distinct labelling

Theorem: r * d = n!

If G and H are rotation systems: G is isomorphic to H if
at least one of the n! relabellings p of the vertices of G
or the flip of G gives the same rotation system as H.

For each rotation system G there is n! ways to label its
vertices.If one of the distinct labellings has exactly r
automorphisms, then every distinct labelling as r
automorphisms.

d= number of distinct labellings
r= number of automorphisms of one distinct labelling

Theorem: r * d = n!

An automorphism of an object is an isomorphism
from that object to itself.

The permutations that are automorphisms form
a group:
1.The identity permutation is an automorphism.
2.If p is an automorphism then so is p-1.
3. If p and q are automorphisms, then so is p * q.

Vertices u and v are in the same orbit if there is
an automorphism that maps u to v. Each orbit is a
subset of the vertices due to the properties of a
group.

Vertices u and v are in the same orbit if there is
an automorphism that maps u to v.

What it means to be in the same orbit:
An ant sitting at u and looking around at the
unlabelled object will see exactly the same thing
as an ant sitting at v.

Properties that do not depend on how vertices
are labelled (e.g. the clockwise-BFS rotation
systems that start at u) be the same with respect
to vertices in the same orbit.

Ant: http://www.1decision1day.com/2013/05/21/what-i-learned-from-an-ant/

Let S and T be subsets of the vertices.
Examples: independent set, dominating set.

Subsets S and T are isomorphic for G if there is
some automorphism of G that maps the vertices
in S to the vertices in T.

g= group order for G.
d= number of ways to have a distinct subset of
vertices so that it is isomorphic to S.
r= number of automorphisms mapping S to S.
Theorem: r * d = g

When considering labellings of G:
The set of permutations that are allowed
labellings form a group called Sn which is just the
group with all n! permutations. [GO= n!]
When considering subsets of the vertices, the set
of permutations that are allowed are the g
automorphisms of G. [GO= g]

d= number of distinct labelled objects you get by
relabelling with an allowed labelling
r= number of allowed labellings mapping one
distinct object to itself.
Both cases: r * d = GO

Both cases: r * d = GO

This is because each distinct labelled object has
the same number of automorphisms mapping it
to itself as each other labelled object.

