
Relabellings of Graphs and Rotation Systems 
 
Isomorphisms 
 
Automorphisms 
 
Orbits 
 
Canonical forms 



One possible canonical form for a graph G: 
 
For G: n vertices, data structure is an adjacency matrix. 
 
Set lex_min_G = G. 
For each of the n! permutations p of 0 to n-1 do 
     Relabel the vertices of G using p to get H. 
     If H < lex_min_G, set lex_min_G= H. 
 
Important feature of a canonical form: 
If two graphs are isomorphic they must have identical 
canonical forms. 
 
This one is not easy to compute but it satisfies the 
requirements. 



Immediate speed up idea: 
Suppose we insist that the vertices are sorted 
by degree in the canonical form. 
Then we only have to test permutations that 
admit this property. 
 
 Any such graph 
property that does not 
change based on how 
you choose to label the 
vertices can be used. 



We can be smarter than just looking at all 
permutations. For example, if vertex 0 is as 
labelled and we want a lex. min. adjacency matrix 
with vertices sorted by degree, what must the 
red vertex be labelled as? 
 
 



One way to get all the automorphisms of 
lex_min_G: 
 
Find lex_min_G. 
 
For each of the n! permutations p of 0 to n-1 do 
     Relabel the vertices of G using p to get H. 
     If H = lex_min_G, p is an automorphism 
     of lex_min_G. 
 
 



To get all the automorphisms of G: 
 
Let q be a permutation such that when q is applied to G 
it gives lex_min_G. 
 
For each of the automorphisms p of lex_min_G, 
 
     the corresponding automorphism of G is:    q* p * q-1 

 
      
 



One possible canonical form for a rotation system: 
For G: n vertices, data structure is a rotation system. 
 
Set lex_min_G = G. 
For each of the n! permutations p of 0 to n-1 do 
     Relabel the rotation system G using p to get  
     a rotation system H. 
     If H < lex_min_G, set lex_min_G= H. 
 
Flip G to get rotation system flip_G. 
 
For each of the n! permutations p of 0 to n-1 do 
     Relabel the rotation system flip_G using p to get  
     a rotation system H. 
     If H < lex_min_G, set lex_min_G= H. 
 



Two important features that make a rotation system 
different from a graph: 
 
1. The neighbours of each vertex are given in clockwise  

order. 
 
2. The ordering is considered to be cyclic. 
     We avoid considering all rotations in graphs without 
     multiple edges by using the ordering that puts the  
    smallest numbered neighbour first (our standard 
     form). This makes comparing them easier. 
 
0:  1 7 4   =    0: 7 4 1  =  0: 4 1 7 
 
 
      
 



What is the standard form relabelled 
rotation system when the permutation 
4  5  0  2  1  3 
is applied to this rotation system? 
 
  0:   5  
  1:   2   
  2:   1   4   5   3  
  3:   2  
  4:   2  
  5:   0   2  
 



Here we can make a massive 
 speed up by being smarter. 
 
Suppose we only consider relabelling 
permutations than can arise by applying 
clockwise-BFS to a graph or its flip. 
 
Any other permutations that are 
automorphisms of the lex. min. subject to this 
condition would then also have to be a 
labelling that arises by applying a clockwise-
BFS to the rotation system or its flip. 



For a given choice of root r and first child f: 
choosing the BFS parent of a vertex is 
something that only depends on r and f, 
and NOT how the initial graph was labelled. 
 
I suspect some students chose the smallest 
numbered vertex in the original labelling. This 
is not a good graph invariant as it does 
depend on how the graph was originally 
labelled. 



Summary of important points: 
 
If G and H are graphs: G is isomorphic to H if at least one 
of the n! relabellings p of the vertices of G gives the same 
adjacency matrix as H has. 
 
For each graph G there is n! ways to label its vertices. 
If one of the distinct labellings has exactly r 
automorphisms, then every distinct labelling as r 
automorphisms. 
 
d= number of distinct labellings 
r= number of automorphisms of one distinct labelling 
 
Theorem: r * d = n! 
 
 



 
If G and H are rotation systems: G is isomorphic to H if 
at least one of the n! relabellings p of the vertices of G 
or the flip of G gives the same rotation system as H. 
 
For each rotation system G there is n! ways to label its 
vertices.If one of the distinct labellings has exactly r 
automorphisms, then every distinct labelling as r 
automorphisms. 
 
d= number of distinct labellings 
r= number of automorphisms of one distinct labelling 
 
Theorem: r * d = n! 
 
 



An automorphism of an object is an isomorphism 
from that object to itself. 
 
The permutations that are automorphisms form 
a group: 
1.The identity permutation is an automorphism. 
2.If p is an automorphism then so is p-1. 
3. If p and q are automorphisms, then so is p * q. 

 
Vertices u and v are in the same orbit if there is 
an automorphism that maps u to v. Each orbit is a 
subset of the vertices due to the properties of a 
group.  



Vertices u and v are in the same orbit if there is 
an automorphism that maps u to v. 
 
What it means to be in the same orbit: 
An ant sitting at u and looking around at the 
unlabelled object will see exactly the same thing 
as an ant sitting at v. 
 
Properties that do not depend on how vertices 
are labelled (e.g. the clockwise-BFS rotation 
systems that start at u) be the same with respect 
to vertices in the same orbit. 
 
Ant: http://www.1decision1day.com/2013/05/21/what-i-learned-from-an-ant/ 

 



Let S and T be subsets of the vertices. 
Examples: independent set, dominating set. 
 
Subsets S and T are isomorphic for G if there is 
some automorphism of G that maps the vertices 
in S to the vertices in T. 
 
g= group order for G. 
d= number of ways to have a distinct subset of 
vertices so that it is isomorphic to S. 
r= number of automorphisms mapping S to S. 
Theorem: r * d  = g 



When considering labellings of G: 
The set of permutations that are allowed 
labellings form a group called Sn which is just the 
group with all n! permutations.   [GO= n!] 
When considering subsets of the vertices, the set 
of permutations that are allowed are the g 
automorphisms of G.      [GO= g] 
 
d= number of distinct labelled objects you get by 
relabelling with an allowed labelling 
r= number of allowed labellings mapping one 
distinct object to itself. 
Both cases: r * d = GO 



 
Both cases: r * d = GO 
 
This is because each distinct labelled object has 
the same number of automorphisms mapping it 
to itself as each other labelled object. 


