
The n-Queen graph: Vertices- squares on an n by n
chessboard. Two vertices are adjacent if a queen could
move from one square to another. That is, if the squares
are on the same row, column, diagonal or back diagonal.
Red vertices: dominating set vertices.
1. How many automorphisms of the graph map each

dominating set to itself?
2. How many different dominating sets does each one

correspond to?

Annoucements
The slides I originally posted had some errors in the
pictures that have been corrected.
Some graph classes that may have polynomial time
algorithms for hard problems:
planar, perfect, k-trees, chordal, permutation, interval,
circular arc, intersection, bounded tree width, bounded
facewidth, claw-free, fullerenes, benzenoids, ….

The "on-time" deadline for the literature review has
been extended until 11:55pm on Tuesday Oct. 28. The
late submission deadline of Fri. Oct. 31 by 11:55pm is
not changed. Upload submissions to connex.

The queen’s graph is not a regular graph.

Red cell
dominates
25 vertices.

Red cell
dominates
23 vertices.

Red cell
dominates
19 vertices.

Number of cells each cell dominates:

Our naïve
approach suggests
that two cells can
dominate 25 + 25=
50 cells.

But if we sort these
numbers in reverse
order:
25, 23, 23, …

We see that 2 cells
could dominate at
most 25 + 23 = 48
vertices/cells.

Choose center cell to be in dominating set:

Yellow squares are dominated.
The number of undominated cells each cell
would dominate decreases dramatically.
New sorted order: 12, 12, 12, 12, 10, 10 …
24 cells are not dominated: need at least 2 more
(12 + 12 ≥ 24).

Greedy approach: choose a cell dominating a
maximum number of undominated vertices:

New sorted order: 8, 7, 7, 6, 6, …
12 cells are not dominated:
need at least 2 more (8+7 ≥ 12).

If we backtrack and color center cell blue:

New sorted order: 23, 23, 23, …
49 cells are not dominated:
need at least 3 more (23 + 23 + 23 ≥ 49).

Our simple formula for an upper bound:
n_extra ≥ num_not_dominated / (∆ + 1)
is very easy to compute: O(1) time.

It takes more time to maintain a better bound.
One tactic: maintain for k= 0, 1, 2, … , n the
number of white vertices dominating k
undominated vertices (num[0…n]).
 x= maximum number of undominated vertices
 some white vertex dominates.
Go from x downwards adding on for one vertex
at a time the number it might newly dominate
until the total is at least the number of
undominated vertices.

n_extra=0; sum=0;
for (k= x; k ≥ 1; k--)
 for (j=0; j < num[k]; j++)
 {
 n_extra++;
 sum+= k;
 if (sum ≥ num_not_dominated)
 goto check_bound;
 }
}
// white vertices can’t dominate all the rest.
return(0);

check_bound:;
if (size + n_extra >= min_size) return(0);

