
The n-Queen graph: Vertices- squares on an n by n 
chessboard. Two vertices are adjacent if a queen could 
move from one square to another. That is, if the squares 
are on the same row, column, diagonal or back diagonal. 
Red vertices: dominating set vertices. 
1. How many automorphisms of the graph map each 

dominating set to itself?  
2. How many different dominating sets does each one 

correspond to? 



Annoucements 
The slides I originally posted had some errors in the 
pictures that have been corrected. 
Some graph classes that may have polynomial time 
algorithms for hard problems: 
planar, perfect, k-trees, chordal, permutation, interval, 
circular arc, intersection, bounded tree width, bounded 
facewidth, claw-free, fullerenes, benzenoids, …. 
 
The "on-time" deadline for the literature review has 
been extended until 11:55pm on Tuesday Oct. 28. The 
late submission deadline of Fri. Oct. 31 by 11:55pm is 
not changed. Upload submissions to connex. 
 



The queen’s graph is not a regular graph. 
 
 

Red cell 
dominates 
25 vertices. 

Red cell 
dominates 
23 vertices. 

Red cell 
dominates 
19 vertices. 



Number of cells each cell dominates: 
 
 

Our naïve 
approach suggests 
that two cells can 
dominate 25 + 25= 
50 cells. 
 
But if we sort these 
numbers in reverse 
order: 
25, 23, 23, … 
 
We see that 2 cells 
could dominate at 
most 25 + 23 = 48 
vertices/cells. 



Choose center cell to be in dominating set: 
 
 

Yellow squares are dominated. 
The number of undominated cells each cell 
would dominate decreases dramatically. 
New sorted order: 12, 12, 12, 12, 10, 10 … 
24 cells are not dominated: need at least 2 more  
(12 + 12 ≥ 24).  



Greedy approach: choose a cell dominating a 
maximum number of undominated vertices: 
 
 

New sorted order: 8, 7, 7, 6, 6,   … 
12 cells are not dominated:  
need at least 2 more  (8+7 ≥ 12).  



If we backtrack and color center cell blue: 
 
 

New sorted order: 23, 23, 23, … 
49 cells are not dominated:  
need at least 3 more  (23 + 23 + 23 ≥ 49).  



Our simple formula for an upper bound: 
n_extra ≥ num_not_dominated / (∆ + 1) 
is very easy to compute: O(1) time. 
 
It takes more time to maintain a better bound. 
One tactic: maintain for k= 0, 1, 2, … , n the 
number of white vertices dominating k 
undominated vertices (num[0…n]). 
 x= maximum number of undominated vertices 
      some white vertex dominates. 
Go from x downwards adding on for one vertex 
at a time the number it might newly dominate 
until the total is at least the number of 
undominated vertices. 



n_extra=0; sum=0; 
for (k= x; k ≥ 1; k--) 
     for (j=0; j < num[k]; j++)   
     { 
          n_extra++; 
          sum+= k; 
          if (sum ≥ num_not_dominated)  
                   goto check_bound; 
     } 
} 
// white vertices can’t dominate all the rest. 
return(0); 
 
check_bound:; 
if (size + n_extra >= min_size) return(0); 
 


