
The Queen Game:
I spent a couple of hours on Friday hacking
together a program to allow me to
interactively explore dominating sets of the
Queen graph.

Disclaimer: I don’t have time to put in
comments or make it structured in an ideal
way right now. But I am releasing it because
it is fun to play with.
See the connex resources for the file
Queen.java

1

To play with it:
javac Queen.java
java Queen <dimension>
For example, for an 8 by 8 board:
java Queen 8
Some help text will be printed in your console
window:

2

Red: position of a queen.

Colors of dominated vertices:

Pink: high degree.
Yellow: could be useful.
White: degree too low to include.

Colors of vertices NOT dominated:

Cyan: high degree.
Green: could be useful.
Blue: degree too low to include.

3

To extend to a desired solution,
at least one pink or cyan vertex
must be included.

The red squares contain the number
of vertices becoming undominated
if the queen is removed.

The other squares contain the
number of undominated cells they
would dominate.

The optimal solution for n= 8:5

4

The board may start out distorted:

5

Drag the bottom righthand corner to
resize it so it looks like this:

Clicking on a non-red square puts a queen
there. Clicking on a queen removes it.

6

Dominated: red (queen), pink, yellow, and white.
Not dominated: blue, green, cyan.
At least one square that is pink or cyan must be
included to reach an optimal solution. 7

If you need k more vertices in the dominating set,
the console shows in reverse sorted order how many
new cells might be dominated.

8

9

Sorted 61:
 8 7
Number of queens: 3
Number of cells not dominated: 11
Upper bound : 15 using at most 2 more.

10

Sorted 60:
 3
Number of queens: 4
Number of cells not dominated: 3
Upper bound : 3 using at most 1 more.

11

There is a text
representation
of the dominating
set. If you solve
an open problem,
make sure you
save this!
_ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _
_ Q _ _ _ _ _ _
_ _ _ Q _ _ _ _
_ _ _ _ Q Q _ _
_ _ Q _ _ _ _ _
_ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _

Sorted 59:

Number of queens: 5
Number of cells not dominated: 0
Upper bound : 0 using at most 0 more.
GOOD DOMINATING SET!

12

The optimal solution for n= 20:
OPEN RESEARCH, range 10 to 11

13

The high degree vertices seem to often line
up in rows or columns or on a diagonal. If you
select one of them, it greatly decreases the
number of vertices another one on the same
row, column or diagonal will dominate.

Note also:
There will be some cells not dominated that
cannot be dominated with one of the high
degree vertices. Hence our simple upper
bound is not as tight as it could be.

14

After 7 vertices have been added, the bounds are usually
strong enough to tell us we cannot complete the
dominating set:

15

Sorted 393:
 22 22 20

Number of queens: 7

Number of cells not dominated: 71

Upper bound:
64 using at most 3 more.

CANNOT COMPLETE TO A DESIRED
SOLUTION.

16

I did not try to make my code fast for the Queen game.
Since a person is playing it and we respond relatively
slowly (as compared to a computer), there was no need
to include sophisticated algorithms.

Correctness was more important because I only had a
couple of hours free to develop, test, debug and play
with the program.

More efficient data structures might make a complete
search for dimension 20 (the first open case) feasible.

