One goal of this assignment is to teach you how
to write code that can elegantly process a very
large number of inputs. As the inputs get very
large and numerous, it is not practical to type
them in each time you run the program, or to
write a program that can only compute the
answer for one graph.

I purposely gave you a lot of inputs to make you
think about this. Real research projects can
have billions of inputs!

Also: I often run one program and use its output
as input to another program. It's harder to
parse the file if you include text as well as
Integers.

Example:

Run a program to generate some class of graphs:
planar graphs (plantri), arbitrary small graphs
(geng), fullerenes (fullgen), trees...

Take each graph and test it: possibly to compute
some parameter to see if a conjecture is true or
hot.

Command file for running on small fullerenes (run_com):

time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time
time

a.out
a.out
a.out
a.out
a.out
a.out
a.out
a.out
a.out
a.out
a.out
a.out
a.out
a.out
a.out
a.out
a.out
a.out
a.out
a.out

1 <c020 > 0020
1 < c024 > 0024
1 <c026 > 0026
1 <c028 > 0028
1 < c030 > 0030
1 <c032 > 0032
1 <c034 > 0034
1 < c036 > 0036
1 <c038 > 0038
1 < c040 > 0040
1 <c042 > 0042
1 < c044 > 0044
1 <c046 > 0046
1 <c048 > 0048
1 < c050 > 0050
1 <c052 > 0052
1 < c054 > 0054
1 < c056 > 0056
1 < c058 > 0058
1 < c060 > 0060

To run this:
source run_com

Program computed a
minimum dominating set
of each graph in the
input file.

Timing data for all
small fullerenes:

n Ib # time
42 11 45 0.504
44 11 89 2.6
46 | 12 116 2.728
48 | 12 299 13.66
50 | 13 271 13.592
52 | 13 | 437 58.023
54 | 14 580 58.44
56 | 14 924 295.042
58 | 15 | 1205 | 248.143
60 | 15 | 1812 | 1109.341

n # time
20 1 0
24 1 0
26 1 0.004
28 2 0
30 3 0.004
32 6 0.02
34 6 0.016
36 15 0.076
38 17 0.092
40 40 0.672

For 40: 0.672u 0.000s 0:00.67 100.0% 0+0k 0+24io Opf+0Ow

=49
minutes

=18.5
minutes

4

n LB #LB #LB+1 | #LB+2 Adj. list
40 10 1 21 18 0.156
42 11 1 44 0 0.104
44 11 0 55 34 0.532
46 12 6 110 0 0.544
48 12 1 109 89 2.62
50 13 6 265 0 2.54
52 13 0 270 167 10.58
54 14 19 561 0 10.38
56 14 1 470 453 51.46
58 15 23 1182 0 42.11
60 15 0 1014 798 183.7

The input files I gave you have rotation
systems that may not represent planar
embeddings (e.g. iprism).

I added a link to a file iplanar_prism.txt
that should contain rotation systems for
planar embeddings.

Some hew rotation systems added to
bottom of assignment description:

Here are some mnput files of graphs with maximum degree 4 you could use for testing:

al_input.zip

You can download this file by right clicking on it and using the "Save as" option and then to unzip it
use:

unzip al_input

Inside the directory al_input, you will find a file called README.txt that explains the contents of the
input files.

The graphs in these files do not necessarily have rotation systems that represent planar embeddings.
The embeddings in iprism are NOT planar. If you would like planar embeddings of the prisms for
testing, use this input file (right click on the name and use "Save as" to save on your computer):

iplanar prism.txt
NEW

If you have a file like this

(the first graph in iplanar_prism.txt):

10

08 3 1 4

3 2 0

o 3 3 1

70 3 09 3 4 2
02 40 3 0 3
0 309

o! O 3 15
3 2 6

60 . 33 7
3 4 8

U1 ©O 0 O O 00 N O O

0° The input

o graph.
70 3 09
o

The 06
80

renumbered O5 20

rotation ol O

system:.

The

renumbered
rotation
system:

The

output:

10

3123
3045
3067
3074
3138
3186
3259
3293
3495
3687

(e I "o T Y
AN <t O
— O O
o
I M N M
4
5
=
=g
O
4+
>
Q. Q)
< e
i
N O ™~
T O «d
A AN M
m333

3428

30309

3096
3157

3268
33709
3485
12

12

3156
3207

3318

34209

35310
30411
3 011 7
3168
32709
3 3810
340911
3 510 6

2 9 10

2 10 3

3

11
11
11
8 10 9

3

If you add text like this
to prompt for the
graph and indicate the
output, it will mess up
your output file (|
won’t be able to use it
as an input file).

Also, if | have 100000
graphs in the file you
won’t want to see
these text pieces
printed 100000
times as the program
runs.

You might want more readable After clockwise BFS:
debugging output:

Graph 1: 03: 1 2 3
Input graph: 1(3): 0 4 5
2(3): 0 6 7
03: 1 4 5 3(3; 0 7 4
13): 2 0 6 43): 1 3 8
2(3): 3 1 7 5(3);: 1 8 6
33: 4 2 8 6(3): 2 5 9
43): 0 3 9 73): 2 9 3
53): 0 9 6 8(3): 4 9 5
6(3): 1 5 7 93): 6 8 7
73): 2 6 8
8(3): 3 7 9 Graph 2:
9(3): 4 8 5 Input graph:

