
1

Various algorithm design paradigms:

Greedy
Divide and Conquer
Dynamic Programming
Flows
Tactics for dealing with hard problems
Backtracking
Approximation algorithms
Local Search
Randomized algorithms
Heuristics

2

Greedy Algorithms:
They make decisions that look to be “good ones” at
the current time and don’t revise those.

Sometimes greedy algorithms provide optimal
solutions!

Other times they can provide potentially good but
not optimal solutions.

Sometimes the answers they give are not very
good.

3

Greedy coloring Optimal coloring

Greedy coloring:
1. Order the vertices.
2. Order the colors.
3. For each vertex, color it

with the first available
color not already used
on one of its neighbours.

4

If you order
vertices of a
bipartite graph
using the BFI
then the greedy
coloring
algorithm will
yield an optimal
coloring.

5

What greedy approaches might give a good solution for
dominating set?
How would you order the vertices?

Note: a quick approach to finding a really good
dominating set would speed up our backtracking
algorithms. The algorithm I gave you has to do more
work when it does not have a small dominating set yet.

Some things that would likely help:

• Add vertices of large degree.

• Add vertices that dominate a maximum number of

undominated vertices.

• Strive for a perfect dominating set (each vertex is

dominated exactly once).

You could include just one greedy step or try several
alternatives to try and find a nice small starting
solution.

6

Red: in dominating set
Yellow: distance 1 from dominating set vertex
Teal : distance 2 from dominating set vertex
Green : distance 3 from dominating set vertex

I would probably want to give preference to the green ones
over the teals as they help to avoid double domination of
the yellow vertices.

4.1 Interval Scheduling

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

8

Interval Scheduling

Interval scheduling.

 Job j starts at sj and finishes at fj.

 Two jobs compatible if they don't overlap.

 Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

9

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order.

Take each job provided it's compatible with the ones already taken.

 [Earliest start time] Consider jobs in ascending order of sj.

 [Earliest finish time] Consider jobs in ascending order of fj.

 [Shortest interval] Consider jobs in ascending order of fj - sj.

 [Fewest conflicts] For each job j, count the number of

conflicting jobs cj. Schedule in ascending order of cj.

10

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order.

Take each job provided it's compatible with the ones already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

11

Greedy algorithm. Consider jobs in increasing order of finish time.

Take each job provided it's compatible with the ones already taken.

Implementation. O(n log n).

 Remember job j* that was added last to A.

 Job j is compatible with A if sj  fj*.

Sort jobs by finish times so that f1  f2  ...  fn.

A  

for j = 1 to n {

 if (job j compatible with A)

 A  A  {j}

}

return A

set of jobs selected

Interval Scheduling: Greedy Algorithm

file://localhost/Users/wayne/cs423/04demo-interval-scheduling.ppt#1. Interval%20Scheduling

12

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

 Assume greedy is not optimal, and let's see what happens.

 Let i1, i2, ... ik denote set of jobs selected by greedy.

 Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i2 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1

13

j1 j2 jr

i1 i2 ir ir+1

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

 Assume greedy is not optimal, and let's see what happens.

 Let i1, i2, ... ik denote set of jobs selected by greedy.

 Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

. . .

Greedy:

OPT:

solution still feasible and optimal,
but contradicts maximality of r.

ir+1

job ir+1 finishes before jr+1

4.1 Interval Partitioning

15

Interval Partitioning

Interval partitioning.

 Lecture j starts at sj and finishes at fj.

 Goal: find minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

1

2

3

4

16

Interval Partitioning

Interval partitioning.

 Lecture j starts at sj and finishes at fj.

 Goal: find minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

1

2

3

17

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that

contain any given time.

Key observation. Number of classrooms needed  depth.

Ex: Depth of schedule below = 3  schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

1

2

3

18

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:

assign lecture to any compatible classroom.

Implementation. O(n log n).

 For each classroom k, maintain the finish time of the last job added.

 Keep the classrooms in a priority queue.

Sort intervals by starting time so that s1  s2  ...  sn.

d  0

for j = 1 to n {

 if (lecture j is compatible with some classroom k)

 schedule lecture j in classroom k

 else

 allocate a new classroom d + 1

 schedule lecture j in classroom d + 1

 d  d + 1

}

number of allocated classrooms

19

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible

lectures in the same classroom.

Theorem. Greedy algorithm is optimal.

Pf.

 Let d = number of classrooms that the greedy algorithm allocates.

 Classroom d is opened because we needed to schedule a job, say j,

that is incompatible with all d-1 other classrooms.

 These d jobs each end after sj.

 Since we sorted by start time, all these incompatibilities are caused

by lectures that start no later than sj.

 Thus, we have d lectures overlapping at time sj + .

 Key observation  all schedules use  d classrooms. ▪

4.2 Scheduling to Minimize Lateness

21

Scheduling to Minimizing Lateness

Minimizing lateness problem.

 Single resource processes one job at a time.

 Job j requires tj units of processing time and is due at time dj.

 If j starts at time sj, it finishes at time fj = sj + tj.

 Lateness: j = max { 0, fj - dj }.

 Goal: schedule all jobs to minimize maximum lateness L = max j.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

lateness = 0 lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

22

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

 [Shortest processing time first] Consider jobs in ascending order

of processing time tj.

 [Earliest deadline first] Consider jobs in ascending order of

deadline dj.

 [Smallest slack] Consider jobs in ascending order of slack dj - tj.

23

Greedy template. Consider jobs in some order.

 [Shortest processing time first] Consider jobs in ascending order

of processing time tj.

 [Smallest slack] Consider jobs in ascending order of slack dj - tj.

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness: Greedy Algorithms

24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1  d2  …  dn

t  0

for j = 1 to n

 Assign job j to interval [t, t + tj]

 sj  t, fj  t + tj
 t  t + tj

output intervals [sj, fj]

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

25

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

26

Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:

i < j (deadline for i < deadline for j) but j scheduled before i.

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has

one with a pair of inverted jobs scheduled consecutively.

i j before swap

fi
inversion

[as before, we assume jobs are numbered so that d1  d2  …  dn]

27

28

29

30

Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:

i < j but j scheduled before i.

Claim. Swapping two consecutive, inverted jobs reduces the number of

inversions by one and does not increase the max lateness.

Pf. Let  be the lateness before the swap, and let  ' be it afterwards.

  'k = k for all k  i, j

  'i  i

 If job j is late:

i j

i j

before swap

after swap



j  f j  d j (definition)

 fi  d j (j finishes at time fi)

 fi  di (i  j)

 i (definition)

f'j

fi
inversion

31

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.

Pf. Define S* to be an optimal schedule that has the fewest number of

inversions, and let's see what happens.

 Can assume S* has no idle time.

 If S* has no inversions, then S = S*.

 If S* has an inversion, let i-j be an adjacent inversion.

– swapping i and j does not increase the maximum lateness and

strictly decreases the number of inversions

– this contradicts definition of S* ▪

32

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the greedy

algorithm, its solution is at least as good as any other algorithm's.

Structural. Discover a simple "structural" bound asserting that every

possible solution must have a certain value. Then show that your

algorithm always achieves this bound.

Exchange argument. Gradually transform any solution to the one found

by the greedy algorithm without hurting its quality.

Other greedy algorithms. Kruskal, Prim, Dijkstra, Huffman, …

