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Various algorithm design paradigms: 
 
Greedy 
Divide and Conquer 
Dynamic Programming 
Flows 
Tactics for dealing with hard problems 
Backtracking 
Approximation algorithms 
Local Search 
Randomized algorithms 
Heuristics 
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Greedy Algorithms: 
They make decisions that look to be “good ones” at 
the current time and don’t revise those. 
 
Sometimes greedy algorithms provide optimal 
solutions! 
 
Other times they can provide potentially good but 
not optimal solutions. 
 
Sometimes the answers they give are not very 
good. 
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Greedy coloring Optimal coloring 

Greedy coloring:  
1. Order the vertices. 
2. Order the colors. 
3. For each vertex, color it 

with the first available 
color not already used 
on one of its neighbours. 
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If you order 
vertices of a 
bipartite graph 
using the BFI 
then the greedy 
coloring 
algorithm will 
yield an optimal 
coloring. 



5 

What greedy approaches might give a good solution for 
dominating set? 
How would you order the vertices? 
 
Note: a quick approach to finding a really good 
dominating set would speed up our backtracking 
algorithms. The algorithm I gave you has to do more 
work when it does not have a small dominating set yet. 
 
Some things that would likely help: 
 
• Add vertices of large degree. 
 
• Add vertices that dominate a maximum number of 

undominated vertices. 
 
• Strive for a perfect dominating set (each vertex is 

dominated exactly once). 
 
 
You could include just one greedy step or try several 
alternatives to try and find a nice small starting 
solution. 
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Red: in dominating set 
Yellow: distance 1 from dominating set vertex 
Teal   : distance 2 from dominating set vertex 
Green : distance 3 from dominating set vertex 
 
I would probably want to give preference to the green ones 
over the teals as they help to avoid double domination of 
the yellow vertices. 



4.1  Interval Scheduling 

Slides by Kevin Wayne. 
Copyright © 2005 Pearson-Addison Wesley. 
All rights reserved. 
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Interval Scheduling 

Interval scheduling. 

 Job j starts at sj and finishes at fj. 

 Two jobs compatible if they don't overlap. 

 Goal: find maximum subset of mutually compatible jobs. 
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Interval Scheduling:  Greedy Algorithms 

Greedy template.  Consider jobs in some natural order. 

Take each job provided it's compatible with the ones already taken. 

 

 [Earliest start time]  Consider jobs in ascending order of sj. 

 

 [Earliest finish time]  Consider jobs in ascending order of fj. 

 

 [Shortest interval]  Consider jobs in ascending order of fj - sj. 

 

 [Fewest conflicts]  For each job j, count the number of 

conflicting jobs cj. Schedule in ascending order of cj. 
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Interval Scheduling:  Greedy Algorithms 

Greedy template.  Consider jobs in some natural order. 

Take each job provided it's compatible with the ones already taken. 

 

counterexample for earliest start time 

counterexample for shortest interval 

counterexample for fewest conflicts 



11 

Greedy algorithm.  Consider jobs in increasing order of finish time. 

Take each job provided it's compatible with the ones already taken. 

 

 

 

 

 

 

 

 

 

 

 

Implementation.  O(n log n). 

 Remember job j* that was added last to A. 

 Job j is compatible with A if sj  fj*. 

 

Sort jobs by finish times so that f1  f2  ...  fn. 

 

 

A   

for j = 1 to n { 

   if (job j compatible with A) 

      A  A  {j} 

} 

return A   

set of jobs selected  

Interval Scheduling:  Greedy Algorithm 

file://localhost/Users/wayne/cs423/04demo-interval-scheduling.ppt#1. Interval%20Scheduling
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Interval Scheduling:  Analysis 

Theorem.  Greedy algorithm is optimal. 

 

Pf.  (by contradiction) 

 Assume greedy is not optimal, and let's see what happens. 

 Let i1, i2, ... ik denote set of jobs selected by greedy. 

 Let j1, j2, ... jm  denote set of jobs in the optimal solution with 

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.  

j1 j2 jr 

i1 i2 ir ir+1 

. . . 

Greedy: 

OPT: jr+1 

why not replace job jr+1 
with job ir+1? 

job ir+1 finishes before jr+1 
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j1 j2 jr 

i1 i2 ir ir+1 

Interval Scheduling:  Analysis 

Theorem.  Greedy algorithm is optimal. 

 

Pf.  (by contradiction) 

 Assume greedy is not optimal, and let's see what happens. 

 Let i1, i2, ... ik denote set of jobs selected by greedy. 

 Let j1, j2, ... jm  denote set of jobs in the optimal solution with 

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r. 

 

. . . 

Greedy: 

OPT: 

solution still feasible and optimal, 
but contradicts maximality of r. 

ir+1 

job ir+1 finishes before jr+1 



4.1  Interval Partitioning 
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Interval Partitioning 

Interval partitioning. 

 Lecture j starts at sj and finishes at fj. 

 Goal:  find minimum number of classrooms to schedule all lectures 

so that no two occur at the same time in the same room. 

 

Ex:  This schedule uses 4 classrooms to schedule 10 lectures. 

Time 
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Interval Partitioning 

Interval partitioning. 

 Lecture j starts at sj and finishes at fj. 

 Goal:  find minimum number of classrooms to schedule all lectures 

so that no two occur at the same time in the same room. 

 

Ex:  This schedule uses only 3. 

Time 
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Interval Partitioning:  Lower Bound on Optimal Solution 

Def.  The depth of a set of open intervals is the maximum number that 

contain any given time. 

 

Key observation.  Number of classrooms needed    depth. 

 

Ex:  Depth of schedule below = 3    schedule below is optimal. 

 

 

Q.  Does there always exist a schedule equal to depth of intervals? 

 

Time 
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Interval Partitioning:  Greedy Algorithm 

Greedy algorithm.  Consider lectures in increasing order of start time:  

assign lecture to any compatible classroom. 

 

 

 

 

 

 

 

 

 

 

 

Implementation.  O(n log n). 

 For each classroom k, maintain the finish time of the last job added. 

 Keep the classrooms in a priority queue. 

Sort intervals by starting time so that s1  s2  ...  sn. 

d  0 

 

for j = 1 to n { 

   if (lecture j is compatible with some classroom k) 

      schedule lecture j in classroom k 

   else 

      allocate a new classroom d + 1 

      schedule lecture j in classroom d + 1 

      d  d + 1  

}     

number of allocated classrooms 
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Interval Partitioning:  Greedy Analysis 

Observation.  Greedy algorithm never schedules two incompatible 

lectures in the same classroom. 

 

Theorem.  Greedy algorithm is optimal. 

Pf.   

 Let d = number of classrooms that the greedy algorithm allocates. 

 Classroom d is opened because we needed to schedule a job, say j, 

that is incompatible with all d-1 other classrooms. 

 These d jobs each end after sj. 

 Since we sorted by start time, all these incompatibilities are caused 

by lectures that start no later than sj. 

 Thus, we have d lectures overlapping at time sj + . 

 Key observation    all schedules use  d classrooms.  ▪ 



4.2  Scheduling to Minimize Lateness 
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Scheduling to Minimizing Lateness 

Minimizing lateness problem. 

 Single resource processes one job at a time. 

 Job j requires tj units of processing time and is due at time dj. 

 If j starts at time sj, it finishes at time fj = sj + tj.  

 Lateness:  j = max { 0,  fj - dj }. 

 Goal:  schedule all jobs to minimize maximum lateness L = max j. 

 

 

Ex: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9 

lateness = 0 lateness = 2 

dj 6 

tj 3 
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max lateness = 6 
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Minimizing Lateness:  Greedy Algorithms 

Greedy template.  Consider jobs in some order.  

 

 [Shortest processing time first]  Consider jobs in ascending order 

of processing time tj. 

 

 

 [Earliest deadline first]  Consider jobs in ascending order of 

deadline dj. 

 

 

 [Smallest slack]  Consider jobs in ascending order of slack dj - tj. 
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Greedy template.  Consider jobs in some order.  

 

 [Shortest processing time first]  Consider jobs in ascending order 

of processing time tj. 

 

 

 

 

 

 

 [Smallest slack]  Consider jobs in ascending order of slack dj - tj. 

counterexample 

counterexample 

dj 

tj 
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Minimizing Lateness:  Greedy Algorithms 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9 

max lateness = 1 

Sort n jobs by deadline so that d1  d2  …  dn 

 

t  0 

for j = 1 to n 

   Assign job j to interval [t, t + tj] 

   sj  t, fj  t + tj 
   t  t + tj 

output intervals [sj, fj] 

Minimizing Lateness:  Greedy Algorithm 

Greedy algorithm.  Earliest deadline first. 
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Minimizing Lateness: No Idle Time 

Observation.  There exists an optimal schedule with no idle time. 

 

 

 

 

 

 

 

 

Observation. The greedy schedule has no idle time. 
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d = 4 d = 6 
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d = 4 d = 6 

7 8 9 10 11 

d = 12 
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Minimizing Lateness: Inversions 

Def.  Given a schedule S, an inversion is a pair of jobs i and j such that: 

i < j  (deadline for i < deadline for j ) but j scheduled before i. 

 

 

 

 

 

 

Observation.  Greedy schedule has no inversions. 

 

Observation.  If a schedule (with no idle time) has an inversion, it has 

one with a pair of inverted jobs scheduled consecutively. 

 

i j before swap 

fi 
inversion 

[ as before, we assume jobs are numbered so that d1  d2  …  dn ] 
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Minimizing Lateness: Inversions 

Def.  Given a schedule S, an inversion is a pair of jobs i and j such that: 

i < j but j scheduled before i. 

 

 

 

 

 

 

Claim.  Swapping two consecutive, inverted jobs reduces the number of 

inversions by one and does not increase the max lateness. 

 

Pf.  Let   be the lateness before the swap, and let  ' be it afterwards. 

  'k = k for all k  i, j 

  'i  i  

 If job j is late: 

i j 

i j 

before swap 

after swap 



j  f j  d j (definition)

 fi  d j ( j finishes at time fi )

 fi  di (i  j)

 i (definition)

f'j 

fi 
inversion 
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Minimizing Lateness: Analysis of Greedy Algorithm 

Theorem.  Greedy schedule S is optimal. 

Pf.  Define S* to be an optimal schedule that has the fewest number of 

inversions, and let's see what happens. 

 Can assume S* has no idle time. 

 If S* has no inversions, then S = S*. 

 If S* has an inversion, let i-j be an adjacent inversion. 

– swapping i and j does not increase the maximum lateness and 

strictly decreases the number of inversions 

– this contradicts definition of S*  ▪ 
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Greedy Analysis Strategies 

Greedy algorithm stays ahead.  Show that after each step of the greedy 

algorithm, its solution is at least as good as any other algorithm's.  

 

Structural.  Discover a simple "structural" bound asserting that every 

possible solution must have a certain value. Then show that your 

algorithm always achieves this bound. 

 

Exchange argument.  Gradually transform any solution to the one found 

by the greedy algorithm without hurting its quality. 

 

 

Other greedy algorithms.  Kruskal, Prim, Dijkstra, Huffman, … 


