The problem is:
Maximize X1 + X2 + 2 * X3 + X4
subject to
-X1 + X3 + 2 X4 < = -3 -X1 + X2 < = -7 -X1 + 2 X2 + X4 < = -5 X1, X2, X3, X4 > = 0Question 1: Set up the phase 1 dictionary for this problem and make the first pivot.
Answer #1:
Phase 1: Before pivoting to make feasible.
X5 = -3 + X1 - X3 - 2 X4 + X0 X6 = -7 + X1 - X2 + X0 X7 = -5 + X1 - 2 X2 - X4 + X0 ----------------------------------------------- w = 0 - X0Taking the first pivot:
X0 enters. X6 leaves. z = -0.000000 The initial dictionary: X5 = 4.00+ 0.00 X1 + 1.00 X2 - 1.00 X3 - 2.00 X4 + 1.00 X6 X0 = 7.00- 1.00 X1 + 1.00 X2 + 0.00 X3 + 0.00 X4 + 1.00 X6 X7 = 2.00+ 0.00 X1 - 1.00 X2 + 0.00 X3 - 1.00 X4 + 1.00 X6 ----------------------------------------------- w = -7.00+ 1.00 X1 - 1.00 X2 + 0.00 X3 + 0.00 X4 - 1.00 X6 X1 enters. X0 leaves. z = -7.000000
Question 2: The optimal solution to the phase 1 problem is:
After 1 pivot: X5 = 4.00+ 1.00 X2 - 1.00 X3 - 2.00 X4 + 1.00 X6 + 0.00 X0 X1 = 7.00+ 1.00 X2 + 0.00 X3 + 0.00 X4 + 1.00 X6 - 1.00 X0 X7 = 2.00- 1.00 X2 + 0.00 X3 - 1.00 X4 + 1.00 X6 + 0.00 X0 ----------------------------------------------- w = -0.00+ 0.00 X2 + 0.00 X3 + 0.00 X4 + 0.00 X6 - 1.00 X0 The optimal solution: -0.000000 X1 = 7.0000 X2 = 0.0000 X3 = 0.0000 X4 = 0.0000 X5 = 4.0000 X6 = 0.0000 X7 = 2.0000
Set up the initial dictionary for phase 2.
Recall, the objective function:
Maximize X1 + X2 + 2 * X3 + X4
Answer #2:
The initial dictionary is:
The initial dictionary: X5 = 4.00+ 1.00 X2 - 1.00 X3 - 2.00 X4 + 1.00 X6 X1 = 7.00+ 1.00 X2 + 0.00 X3 + 0.00 X4 + 1.00 X6 X7 = 2.00- 1.00 X2 + 0.00 X3 - 1.00 X4 + 1.00 X6 ----------------------------------------------- z = 7.00+ 2.00 X2 + 2.00 X3 + 1.00 X4 + 1.00 X6
Question 3: The final dictionary is:
X2 enters. X7 leaves. z = 7.000000 After 1 pivot: X5 = 6.00- 1.00 X3 - 3.00 X4 + 2.00 X6 - 1.00 X7 X1 = 9.00+ 0.00 X3 - 1.00 X4 + 2.00 X6 - 1.00 X7 X2 = 2.00+ 0.00 X3 - 1.00 X4 + 1.00 X6 - 1.00 X7 ----------------------------------------------- z = 11.00+ 2.00 X3 - 1.00 X4 + 3.00 X6 - 2.00 X7What can you conclude about this problem?
Answer #3:
The problem is UNBOUNDED.