| Primal: | Dual: |
| Max cT x | Min bT y |
| subject to | subject to |
A x <= b |
AT y >= c |
x >= 0 |
y >= 0 |
(a) For all primal feasible solutions x and for all dual feasible solutions y: cT x <= bT y.
This is sufficent to imply that:
| Primal\Dual | Optimal | Infeasible | Unbounded |
|---|---|---|---|
| Optimal | YES (b) |
NO (b) |
NO (b) |
| Infeasible | NO (b) |
(c) |
YES (a) |
| Unbounded | NO (b) |
YES (a) |
NO (a) |
(a) For all primal feasible solutions x and for all dual feasible solutions y: cT x <= bT y.
(b) The Duality Theorem.
Consider
Maximize 2 X1 - X2
subject to
X1 - X2 <= 1
-X1 + X2 <= -2
X >= 0
The dual is:
Minimize 1 Y1 - 2 Y2
subject to
Y1 - Y2 >= 2
-Y1 + Y2 >= -1
Y >= 0
The dual in standard form:
Maximize - Y1 + 2 Y2
subject to
- Y1 + Y2 <= -2
Y1 - Y2 <= 1
Y >= 0
Solving the primal problem:
Phase 1: Before pivoting to make feasible. X3 = 1 - 1 X1 + 1 X2 + 1 X0 X4 = -2 + 1 X1 - 1 X2 + 1 X0 ------------------------------------------- z = 0 + 0 X1 + 0 X2 - 1 X0 X0 enters. X4 leaves. z = 0 The initial dictionary: X3 = 3 - 2 X1 + 2 X2 + 1 X4 X0 = 2 - 1 X1 + 1 X2 + 1 X4 ------------------------------------------- z = -2 + 1 X1 - 1 X2 - 1 X4 X1 enters. X3 leaves. z = -2 After 1 pivot: X1 = 1.50 + 1 X2 - 0.50 X3 + 0.50 X4 X0 = 0.50 + 0 X2 + 0.50 X3 + 0.50 X4 ------------------------------------------- z = -0.50 + 0 X2 - 0.50 X3 - 0.50 X4 Original problem is INFEASIBLE.Solving the dual problem:
Phase 1: Before pivoting to make feasible. Y3 = -2 + 1 Y1 - 1 Y2 + 1 Y0 Y4 = 1 - 1 Y1 + 1 Y2 + 1 Y0 ------------------------------------------- z = 0 + 0 Y1 + 0 Y2 - 1 Y0 Y0 enters. Y3 leaves. z = 0 The initial dictionary: Y0 = 2 - 1 Y1 + 1 Y2 + 1 Y3 Y4 = 3 - 2 Y1 + 2 Y2 + 1 Y3 ------------------------------------------- z = -2 + 1 Y1 - 1 Y2 - 1 Y3 Y1 enters. Y4 leaves. z = -2 After 1 pivot: Y0 = 0.50 + 0 Y2 + 0.50 Y3 + 0.50 Y4 Y1 = 1.50 + 1 Y2 + 0.50 Y3 - 0.50 Y4 ------------------------------------------- z = -0.50 + 0 Y2 - 0.50 Y3 - 0.50 Y4 Original problem is INFEASIBLE.