I used Matlab to do the computations required for making these notes.
We want to LU-factorize a matrix A0.
A0 =
2 -1 2
2 3 1
-1 1 -2
1. The first step is to multiply the first row by 1/2.
[ M1(1/2)].
This is equivalent to premultiplying by B1.
B1 =
0.5 0 0
0 1 0
0 0 1
A1 = B1 * A0 =
1 -0.5 1
2 3 1
-1 1 -2
2. Next, -2 times row 1 is added to row 2
[A1,2(-2)]
and
1 times row 1 is added to row 3.
[A1,3(1)].
This is equivalent to premultiplying by B2.
B2 =
1 0 0
-2 1 0
1 0 1
A2 = B3 * A1 =
1.0000 -0.5000 1.0000
0 4.0000 -1.0000
0 0.5000 -1.0000
3. Now multiply row 2 by 1/4
[M2(1/4)].
This is equivalent to premultiplying by B2.
B3 =
1.0000 0 0
0 0.2500 0
0 0 1.0000
A3 = B3 * A2 =
1.0000 -0.5000 1.0000
0 1.0000 -0.2500
0 0.5000 -1.0000
4. Next, -1/2 times row 2 is added to row 3
[A2,3(-1/2)].
This is equivalent to premultiplying by B4.
B4 =
1.0000 0 0
0 1.0000 0
0 -0.5000 1.0000
A4 = B4 * A3 =
1.0000 -0.5000 1.0000
0 1.0000 -0.2500
0 0 -0.8750
5. Finally, premultiply row 3 by -8/7
[M3(-1.1429)].
This is equivalent to premultiplying by B5.
B5 =
1.0000 0 0
0 1.0000 0
0 0 -1.1429
A5 = B5 * A4
1.0000 -0.5000 1.0000
0 1.0000 -0.2500
0 0 1.0000
L1inv = B2 * B1 0.5000 0 0 -1.0000 1.0000 0 0.5000 0 1.0000
L2inv = B4 * B3
1.0000 0 0
0 0.2500 0
0 -0.1250 1.0000
L3inv = B5
1.0000 0 0
0 1.0000 0
0 0 -1.1429
L1 = inv(L1inv)
2 0 0
2 1 0
-1 0 1
L2 = inv(L2inv)
1.0000 0 0
0 4.0000 0
0 0.5000 1.0000
L3 = inv(L3inv)
1.0000 0 0
0 1.0000 0
0 0 -0.8750
L = L1 * L2 * L3
2.0000 0 0
2.0000 4.0000 0
-1.0000 0.5000 -0.8750
U = A5
1.0000 -0.5000 1.0000
0 1.0000 -0.2500
0 0 1.0000
TESTA = L * U
2 -1 2
2 3 1
-1 1 -2